
UCRL-ID- 137634

TIGER LDRD Final Report

D. J. Steich, S. T. Brugger, J. S. Kallman, D. A. White

February 1,2000

U.S. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at httD:/ /www.doc.eov/bridPe

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reuorts@ado nis.osti.cov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis .f edw orld .gov
Online ordering: httu: / /www.ntis.pov/orderine.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

http://www.llnl.gov

TIGER LDRD Final Report

EXECUTIVE SUMMARY

This final report describes our efforts on the Three-Dimensional Massively Parallel CEM
Technologies LDRD project (97-ERD-009). Significant need exists for more advanced
time domain computational electromagnetics modeling. Bookkeeping details and
modifying inflexible software constitute a vast majority of the effort required to address
such needs. The required effort escalates rapidly as problem complexity increases. For
example, hybrid meshes requiring hybrid numerics on massively parallel platforms
(MPPs).

This project attempts to alleviate the above limitations by investigating flexible
abstractions for these numerical algorithms on MPPs using object-oriented methods,
providing a programming environment insulating physics from bookkeeping.

The three major design iterations during the project, known as TIGER-I to TIGER-III,
are discussed. Each version of TIGER is briefly discussed along with lessons learned
during the development and implementation. An Application Programming Interface
(MI) of the object-oriented interface for Tiger-III is included in three appendices. The
three appendices contain the Utilities, Entity- Attribute, and Mesh libraries developed
during the project. The -API libraries represent a snapshot of our latest attempt at
insulated the physics from the bookkeeping.

INTRODUCTION

Numerical simulation of PDEs is one of the cornerstones of modern engineering and
physics. PDEs describe an enormous variety of phenomena: electromagnetic radiation,
structural dynamics, thermal and fluid flow are just a few of the subject areas amenable to
numerical simulation. Over the years, a great number of computer programs have been
written to perform this simulation, and almost all of them have a great deal in common.
They all must represent the domain on which the problem is to be solved, they all must
use domain information to generate solver matrix coefficients, and if they deal with large
enough problems, they must partition and distribute the problem over multiple processors
and handle communications between partitions. Considering all of the codes that have
been written and are being written, there is a huge duplication of effort.

The purpose of the TIGER project is to investigate abstractions that would make coding
easier for the authors of numerical PDE simulation systems by extracting the
bookkeeping and separating it from the physics. Examples of bookkeeping include
representing (and extracting information from) problem meshes, as well as partitioning

and communications. The vehicle for this effort was the C++ language. The object2
oriented features of C++ make abstracting the bookkeeping into a small set of classes
much less difficult.

9

9

9

9
9
9
9

To this end a set of libraries and a pre-mesh-processor has been constructed:
9 A Utilities library.
9 set of container classes suited to PDE (Partial Differential Equation) solution
9 set of communication classes (Message Passing Interface (MPI) & Pthreads)
P a memory management system that organizes raw memory usage
9 miscellaneous utilities (Oct-tree, Red-black binary tree, Registry, String, . .

classes)
9 A Entity-Attribute library.

tes the organization and construction of local, shared, and computed
es in a multi-processor s e t t i n o

modification of
_y

n identical sets of Attributes
k=-^.y*s th. n . J l ~ r . b o * c$ *E&61’%5

extensive data construction methods
multi-processor Entity/Attribute communication systems
extensible programming API for data modification and association

9 A Mesh library.
9

9 manages Topological connectivity between Entities
9 manages the construction of mesh parts into the Entity/Attribute container
9 serial and parallel versions Mesh reader hierarchy

> PreTiger a pre-mesh-processor- that sets up the mesh input for TIGER in multi-

~Ivfmk-ClasSes-~ t%a&bility to have multiple unconnected/
dinated /unstructured / structured meshes

-------- - --. processor setting
> manages the mesh part partition
9 re-maps non-contiguous to cont
9 allocates processors for each mesh part

9 writes m c e s s o r specific partition files for TIGER

These librari w ow the physicist or analyst to deal with the phenomena to be modeled -

instead of writing code to hold and distribute meshes in memory.

This project has gone through a number of design and implementation iterations. We
have taken earlier designs to the point of building specialized Maxwell’s equation
simulators. At each iteration we have improved the performance and the programmer
interface to the libraries. The first iteration culminated in TIGER-I, which was capabIe of
representing unstructured meshes. The second iteration culminated in TIGER-II which

was capable of representing hybrid (structured & unstructured) meshes with limited
Attribute tagging and had very limited parallel communication capabilities. The result of
the final iteration is TIGER-III, which can represent and communicate arbitrarily tagged

TIGER-III takes much of the pain out of writing PDE simulation suites. At this
hybrid meshes. Coupled with the physicisthalyst's code and a parallel solver ?ZiS€Sh 1 i A:@.& I

time, the TIGER-111 implementation is in the final stages of completion.

Background

The primary purpose of this project was to investigate the use of obj
techniques to abstract physics from bookkeeping. The motivation behind accomplishin

primary focus was to have this applicable to time domain Computational

nted

this task was to reduce the coding development time of complex applications. * Our

ElectroMagnetics (CEM) software development with the intention of having the
techniques developed here be useful to a much larger computational arena. The project
software is named TIGER (TIme Domain Generalized Excitation and Response).

The two largest existing time domain codes CEM within engineering, TSAR (Time
domain Source And Response), a structured Finite Difference Time Domain (FDTD)
code, and DSI (a Discrete Surface Integral (DSI), an unstructured Finite Volume Time
Domain (FVTD) code both have severe extensibility limitations. There are numerous
versions of both these codes each with different feature sets. So in addition having code
that was difficult to enhance, when adding new physics to the code, there was a dilemma
as to which version of the code to add it to. Often the solution was to add it to the version
closest to the problem of interest with the intention of going back later and adding the
new physics to other versions in the future. Needless to say the solution had many
difficulties. As the complexity of the problem increased the limitations mentioned above

In a typical time domain CEM code, over 90 percent of the code is devoted to
bookkeeping issues. Even the source code within the physics kernel routines themselves
is often dominated by bookkeeping. For example, a typical version of TSAR is almost
entirely bookkeeping software. Even the core FDTD, boundary condition, source, and
sensor routines are still primarily involved with bookkeeping issues. This is also the case
for the DSI code, although there are more equations there are also more bookkeeping
issues.

Approach

This section describes what we are trying to accomplish and an overview of our
approach.

In order to alleviate the difficulties mentioned in the background section, we originally
proposed the following four primary objectives:
$ 6

1) to design an object-oriented framework that provides long term extensibility
2) to investigate abstractions required to efficiently insulate physics from bookkeeping
3) to develop generalized algorithms that allow the unification of existing time domain

4) to formulate and validate the new physics technologies required for Advanced
CEM technologies

Hydro Facility based on objectives 1-3.
66

During the course of the research, we h
approach.
sections of this report.

r emphasis and details of the
We briefly describe the reasons for these changes in the TIGER design

In simple terms, given a new, potentially unforeseen computational programmatic need,
we desire to minimize the man-effort required to solve the problem. The most obvious
answer is to already have the software required to solve the problem and have that
software easy to use. If the need requires a new software technology then the effort
required should be minimized, in part, by maximizing the reuse of existing software.

From a programmer’s point of view, our primary objective is to investigate the use of
object-oriented techniques to minimize the effort involved writing a time domain CEM

possible to as many other Engine

e overall start-to-finish code-development cycle important
aspects of the objective

Our approach to achieving the desired objectives was to build a set of object-oriented
libraries that provide capabilities which reduce code development time. The intent
behind these libraries was to have them be highly extensible and flexible and have the
library interfaces themselves serve as the generalization and code-reuse vehicles.

The libraries would be an investigation into the automation of the bookkeeping involved
in building a time domain CEM code. Our goal was to accomplish this with minimal loss
of efficiency. We also desired this technology to be applicable to other computational
areas.

Design Overview of

We began by investigating how to idulate- the physics from the bookkeeping in areas
where the majority of the software velopment time has occurred in the past. For time
domain CEM codes, a vast major ty of the software development effort has been in

building, organizing, traversal, and querying of data structures constitutes a majority of
the source code. Was there a way to unify this bookkeeping once and for all? Was it
possible to pull the data detaiIs away from the physics? Was it possible to unify the
hybrid nature of the mesh types, especially structured/unstructured differences? The
following was our frrst attempt.

application of physics algorithms f to mesh components. The bookkeeping involved in

The mesh management system for TIGER-I consisted of an eight layered wedding cake
of code, looking much like this:

Mesh
Unstructured-manager

Submesh-manager
Table-manager

Superset
Table

Array-of-sets
Memory and Array Classes

We will describe this wedding cake from the bottom up.

At the time this project started, the C t t language was still having features and libraries
added. The Standard Template Library (STL) was neither fast nor memory efficient. But
perhaps the biggest limitation was our strong desire to control the behavior of the data
placed in these STL containers. Having the data remain fixed during certain construction
phases and then relocate during others etc.. . are tasks the STL was not very suited for. It
was decided that we would build our own memory manipulation and efficient array
classes. The memory manipulation routines allowed us to keep track of memory (and

were of great utility in debugging). The array classes were what everything else was build
upon. The most important array classes were those that could change size:
Adjustable-arrays and Noncontiguous-arrays. Adjustable arrays are arrays that can
change their size dynamically. When a user accesses an element beyond the current array
size, the array expands to include the newly accessed portion of the array. Adjustable
arrays can be expensive, because if the array is already large and the user asks it to
expand, it is possible that the entire array may have to be copied (if the array is in a part
of memory where it can't easily expand and must be moved outright). Non-contiguous
arrays are accessed in the same way that an Adjustable array is, but, behind the scenes,
hidden from the casual programmer's eye, memory is allocated in blocks, and expansion
never causes the wholesale moving of all of the data in the array. For large arrays, Non-
contiguous storage is very efficient.

Above the array classes is the Array-of-sets. Consider a space filling mesh. The mesh
has 0-dimensional nodes, 1 -dimensional edges, 2-dimensional faces, and 3-dimensional
cells. A node has a position, as well as a set of edges that are connected to it. An edge
has two nodes that define its endpoints, as well as a set of faces that it helps define. A
face has a set of edges, and, unless it is on the mesh surface, serves to separate two cells.
A cell has a set of faces that define it. At the time we were writing TIGER-I, it would
have been possible to make an individual C-t+ object out of each node, edge, face, and
cell, but it would have been very expensive in terms of memory. As a way to consolidate
some of these objects into more efficient structures we built Arrays-of-sets. The sets
refer to the collections of the things that these objects point to (either directly or
indirectly). An Array-of-sets was a specialization of a Noncontiguous-array that held a
set of a particular size. Sets could be accessed, inserted, and removed.

Before describing the Table, we have to make a small detour and describe the entire
structure necessary to hold an unstructured mesh. What is necessary is a set of four data
structures, one of which represents cells, faces, edges, and nodes. The structure can be
thought of as a pillar or column. At the top of the column is an array that, given an Entity
number, will point to the sets that tell what that Entity is connected to (the ups (entities of
higher dimension), and downs (entities of lower dimension)), and what the Entity's
Attributes are. If you have a face number, you can get the face's sets, which will tell you
the numbers of the cells the face is separating, as well as the numbers of the edges that
make up the face. In addition you can get the face's Attribute (an integer tag). Similar
arrangements hold for cells, edges, and nodes, although for nodes there is an additional
array that is needed to hold the node positions.

Tables contain Arrays-of-sets for the ups, downs, and Attributes of a group of entities,
all of which have the same number of ups and downs. In any of the columns mentioned
in the previous paragraph there will be a number of tables. For instance, in the edge
column, there will be tables for edges with two faces and two nodes, three faces and two
nodes, four faces and two nodes, etc.

A Super-set is used as an accessor in a Table-manager. It contains member functions
that let the programmer access the ups, downs, and Attributes of any Entity. The

Super-set is also the way a programmer adds ups, downs, and Attributes. When the user
asks the Table-manager for information about an Entity, it gets passed back in a
Super-set.

The Table-manager is, for the most part, the column mentioned previously. It manages
all of the tables necessary to describe, for instance, all of the edges in a mesh. If an
Entity has an up or a down added to or removed from it, the table manager takes it from
its current table and puts it into the appropriate one. This happens without the knowledge
or interference of the programmer.

The Submesh-manager is an abstract base class that represents all things that manage the
four columns mentioned earlier. It has placeholders for methods for accessing
Table-managers for each of cells, faces, edges, and nodes as well as loading of all of
these entities. The reason this class is abstract is that it was supposed to be a unified
interface to both structured and unstructured sub-meshes.

\,

The Unstructured-manager implements the Submesh-manager interface for unstructured
meshes. In addition to the cell, face, edge, and node Table-managers, it also contains an
array to hold global node numbers (important in the construction of the mesh). It has the
actual methods for accessing the Table-managers and loading the mesh.

The Mesh class is meant to hold a set of Submesh-managers and deal with their
interfaces. Mesh currently has the ability to hold a single Unstructured-manager. The
Mesh class was used in a prototype physics code that was used to model electron

tructed a prototype Mesh management system. Next, we tested
to see how successfully the bookkeeping was abstracted from

the physics. We built a finite volume DSI formulation time domain electromagnetics
code from scratch using our Mesh management system. The original code* developed
by Neil Madsen at LLNL, was a FORTRAN based code that took many man-years to
develop. To build and debug that code from scratch without using Mesh management

iring at least a m system would have a tremendous
another FORTRAN version had required man-years but included
particles). Our Mesh management system was far from complete. The software required
iterators, better data manipulation support, and much better interfaces but it was far
enough to test.

/

A great deal of effort went into this test. We successfully added the DSI physics kernel
and complex sources and sensors. In addition, modifications were made to compute
accelerator wake fields on the fly (in contrast to post processing for wake fields). These
modifications made it possible to derive the wake fields for model e-beam kickers in a
single run rather than requiring two runs, storing massive quantities of data, and post
processing. While the product of our test was just a serial DSI time domain code, the
software had new physics not even in the original code. We able to build and test real
accelerator problems not possible prior to this project.

-

e v W

rcr; 1.1 \‘ha
4 /

We successfully modeled several AHF picker structures and achieved over a two order of
magnitude reduction in the numbe unknowns compared to earlier TSAR
models. We had turn around times hours rather than weeks of CPU time.
From many perspectives we were v th the results. Very early in the project
we had already achieved many of our objectives with regard to AHF accelerator
components. However, this was just a prototype version; we next turned our attention to a

. Most of the time the abstractions worked
r of one third the effort. (Here “one third the

effort” is just an educated guess based on our experiences.)

The biggest limitation of the TIGER-I scheme was that there were too many layers of
software, each of which occasionally had to be punctured to allow access to lower levels.
The syntax that developed over this evolution was awkward and unwieldy. Decisions
made early in the development of TIGER-I made it difficult to incorporate hybrid meshes
(structured or unstructured). In addition there were unacceptable memory overheads and
the software ran slow. The decision was made to start over with a very different model of
Mesh management system in our next version.

From a flexibility and extensibility point of view, we found the TIGER-I scheme limited.
TIGER-I consisted of containers that managed large collections of Mesh components.
There was and Array-of-sets container where nodes, edges, faces, cells where placed.
From a finite difference or finite volume approach we found the rigid nature of our data
layout too restrictive. We knew that some of these concerns would go away as we added
material, interface, field, algorithm, etc ... classes, but a many of the limitations where
solely based on the lack of quick, transparent access to data. For example, suppose we
wanted to apply a particular algorithm to all the edges of a problem space that had one
node on the surface of two materials and the other node within a material. The only
solution was to loop over all the edges and check each edge’s data. In general, we had no
way of iterating over data, (ie., all cells containing the material copper), without iterating
over all the entire mesh. What was most disconcerting was that this general way of
accessing the data was by far the most common way we wanted to access the data. In a
finite difference scheme there often is no real mesh. The mesh is implied by position
within an array or by formula. A very common method is to tag various mesh
components with data and iterate over the data independently from the mesh. Much of the
complexity of the existing software was created to specifically address this need and our
Mesh management system did not handle this well. The approach we ended up taking
was to iterate over all the edges or faces and apply-the appropriate algorithm based on
looking at the data. This was limiting in that it created a host of special cases especially
when the questions determining the algorithm were of compound nature and/or involved
indirect nearest-neighbor topology considerations. This approach did allow us to build a
code but we wanted to address this limitation in our next version.

Organizing the data based on data and data associations could alleviate our general data
access and iteration needs. Also, moving the data abstractions down to very low levels

(i.e. nodes, edges, fac , cells) w d reduce the required complexity of management
systems and provide the object-oriented freedom we were striving for. The question was
how to accomplish this. It is very well known in object-oriented environments that if
performance is an issue '%I"" abstractions should not be down at the lowest levels. We
were already running into performance concerns in TIGER-I due to the very light weight
nature of finite difference and finite volume techniques. Typically, we have say two
multiplies and two additions per component of work to perform for every memory fetch
that is required. This small CPU effort per data item is the primary reason why the
execution of finite difference and finite volume schemes are typically always memory
starved. So the notion of having hundreds of millions of objects being constructed, each
with its own data and methods, rather than accessing a few tens of large containers
sounded appealing but appeared to be impractical. Both the memory footprint on a per
object basis and the CPU required to accomplish this seamed daunting. * We learned a lot from out first version. An overview of our experiences to date were that
while that object-oriented programming using C++ was very powerful it had some large
limitations that we had to overcome on the project. The C++ compilers were deficient
but were improving. Object-oriented programming was no silver bullet, it was going to
be a lot of design and hard work. Memory and CPU efficiency concerns influenced our
design and implementation far more than we would have liked. Our experience to date
was that object-oriented software development was no faster than FORTRAN software
development when the core class abstractions needed to be modified. Perhaps it was
even slower due to the tremendous extra effort required to design the classes. However,
the end product was much more flexible and C++ was inherently better suited to adding
behavior extensions than FORTRAN.

Design Overview of TIGER-I1

In TIGER-11 the basic philosophy of how the mesh was to be stored was changed. Instead
of storing indices into tables as the ups and downs of an Entity, actual pointers to the
entities are stored. This removes a step from the process of moving from one Entity to
another, and it was hoped this would bring an increase in speed to the code. More
fundamentally it facilitated the use of pointers to real objects rather than having an index
into a container where raw data lived. Another philosophical difference is that instead of
having a single integer tag to describe everything there is to know about an Entity, we
wanted to be able to tag entities with arbitrary Attributes. We wanted to add the
capability to efficiently access the data in user defined ways. If possible we wanted to
have more polymorphism at node, edge, face, cell level and not up at the container level.
In addition, we wanted to have hybrid meshing and parallel processing built more
explicitly into the code.

Another difference between TIGER-I and TIGER-11 architecture is that in TIGER-I
entities were divided into cells, faces, edges, and nodes, while in TIGER-I1 there are only
entities. Entities have Attributes, some of which are local (such as position, or material),
while some are shared (such as whether an Entity is a node, edge, face, or cell). In

TIGER-I1 entities were stored in two parts. Every Entity could have local data which was
stored in an Entity specific piece of memory, but every Entity also had shared data
(Attributes and the number of ups and downs). The Attributes of a group of entities were
collected in one place (called a Domain), which was pointed to by every Entity that
shares those Attributes. The local data (including the pointers to the ups and downs)
were stored For unstructured meshes there was one
Noncontiguous array for each Domain, while for structured meshes it was possible for
many types of entities without local data to live in a single Noncontiguous array and
point to different Domains.

in Noncontiguous arrays.

As stated above, we wanted to have a more general Attribute tagging ability in TIGER-11.
We wanted to be able to tag any Entity with any Attribute. To this end we built a number
of Attribute data classes, all of which were specializations of a root Attribute class. Any
Entity could have one Attribute from any of these classes (although some we
contradictory: it doesn't make sense to have an Entity that has both Node
Attributes). The Entity Attributes were pointed to by the Entity's Domain. Attri tes- CU
have three types of data in them: local, shared, and computed. Local data are spec ic to
an Entity, and there must be room allocated to store the local data when the Entity is
created. Shared data resides in the Attribute and has no memory overhead. Computed
data is generated every time the appropriate Attribute method is called and has no
memory overhead (especially. useful when trying to determine the ups, downs, and
positions of entities in a structured mesh). Adding an Attribute to an Entity causes it to
change Domains to one that has that Attribute in addition to all of the current ones. If a
Domain with the Entity's new Attribute set doesn't exist, a new Domain is created, and a
new Noncontiguous array (with spaces sized for the new Entity) is generated to hold the
Entity. The Entity is moved and the local data for its Attributes are put in the appropriate
places in its new place.

c-i-jp

A great deal of effort went into making sure that TIGER-II would be able to use hybrid
meshes. Hybrid meshes are meshes that are made of a number of sub-meshes, any of
which may be structured or unstructured. Structured meshes have the potential to greatly
reduce the memory required to store them because all of the mesh parameters (positions,
lengths, areas, directions, and volumes) can be computed from a very few values.
Multiple unstructured meshes allow different mesh generators to be used in different
parts of the problem (an advantage in some circumstances). To simplify the coding we
decided to only hybridize unstructured meshes. In order to hybridize structured meshes
(either to other structured meshes or to unstructured meshes), they had to be wrapped in
an unstructured skin. Reconciling meshes to one another also turned out to be a difficult
problem on single processors, as the individual meshes each had their own node numbers
which made it difficult to find corresponding nodes, edges, and faces.

\

The overall structure of TIGER-II looks like this:

Superme sh
Mesh

Factory
Domain Entity Attribute

Array

At the bottom once again is the Array class. The STL libraries still did not perform as we
needed them to in order to make best use of memory and CPU. The Array classes were
very similar to those developed in TIGER-I and little effort went into changing them.

The Entity, Domain, and Attribute classes were all interdependent upon one another. An
Entity contains a pointer to a Domain, pointers to the ups and downs, and whatever local
data needs to be held by its Attributes (pointers to which are held in its Domain). The
Attribute classes tell the Entity what it is. There are broad groups of Attributes (such as
Topology, which tells an Entity if it is a Node, Edge, Face, or Cell, and Material, which
tells an Entity if it is a Maxwell-Material (and if so if it is copper, aluminum, etc.)). Any
Attribute pointed to by an Entity's Domain points back to the Domain. The Domain
holds all of the shared information pertinent to a set of Entities (all of the Attributes they
contain, how many ups and downs they have, how many there are, and where they start in
memory). If any of the Entities held in a Domain change in any way (adding an up or a
down, adding or cutting an Attribute, etc.) then that Entity is removed from the Domain's
care, and handed off to another Domain. If there is no Domain currently existing that has
the Entity's new Attribute set or up or down count, the Factory creates a new Domain.

The Factory creates Domains and Entities. A request to create an Entity arrives at the
Factory with a set of Attributes that describe it and the desired number of ups and downs.
The Factory looks through the records of previously created Domains to find one that
matches the Attribute set and up and down counts. If it is unable to find a Domain to
match, it creates one, as well as allocating a Noncontiguous-array in which to hold the
Domain's Entities. After finding (or creating) the relevant Domain, the Factory creates an
Entity in the Domain and returns a pointer to it.

The Mesh is the object that asks the Factory to make Entities. The Mesh has two jobs:
load a mesh from a file, and provide a set of Entities based on a user supplied filter. In
loading, for example, an unstructured mesh from a file, the Mesh class uses the Factory to
first create the Entities that represent the nodes. These Entities have a Node Attribute
(which contains the node position information), and, initially, no ups or downs. As they
are loaded, their global node numbers and a pointer to their corresponding Entity are
recorded. After the nodes are loaded, the cell records are read. These records contain a
material number and a list of global node number from which the cell is constructed. The
order of the cell's global node numbers gives the connectivity of the mesh and specifies
the edges and faces that need to exist before the cell can be created. Some of the edges
and faces may already have been created, and we have to use the global node numbers to
access the cell's Node Entities, and check to see if they have the appropriate edges shared
between them. If they don't, the edges have to be created (by calling the Factory to create
an Entity with an Edge Attribute, two downs, and no ups), and connected to the
appropriate Node Entities (which have to have an up added to them, so they move in
memory). Once the Edges are in place, the Faces must be either found or created (and

connected the Edges (which move)). Finally, the Cell can be created (and connected to
the Faces (which move)). Loading structured meshes is less straightforward.

The Mesh’s second job is to give the user a set of Entities based on a user-supplied filter.
By specifying a filter, the user asks for the Entities that have particular Attributes and up
and down counts. So if, for instance, the user wanted to see the exterior of the mesh, he
would build a filter that asked for all Face Entities with one up (one cell). When coupled
to a visualization tool, this would allow inspection of the mesh to determine if there were
loose faces flapping around on the interior. Filtering and visualization where of great
utility in debugging.

The Supermesh is the object that orchestrates the loading of the multiple meshes and
reconciles them to existing together. The Supermesh reads a supermesh file which tells it
what kind of mesh files to load and the associated mesh file names. Once each of these
meshes is loaded independently, the Supermesh reconciles them. Reconciliation works
as follows: for every Mesh, every exterior Face is examined to see if all of the Nodes of
the Face are duplicated in any other Mesh. If they are, and they make up a face, then the
Edges of the Nodes are pointed to the duplicate Nodes, and the Nodes are deleted. The
Face is pointed to the duplicate Edges, and the Edges are deleted. The Face’s Cell is
pointed to the duplicate Face, and the Face is deleted. There are many special ca s and
the process is quite involved.

TIGER-11 removed many of the limitations we found in TIGER-I. The user-
define, in a limited sense, the data organization making it possible to say something like
“Iterate over all edges having Attribute “XYZ’ connected to faces containing 3 edges”.
This was a runtime question requiring no new code to be written. This freedom allows
one to trivially attach data, Attributes, algorithm

\ (9 CY41

length, position, mat

element meshe
apply a filter string to

underlying mesh type.

oved interface over
TIGER-I. TIGER-II also allowed limited massively parallel unstructured meshes. (The

interface -complex. In fact, the processes of structured mesh loading and of
mesh reconciliahn were so involved that they made further progress on the code
extremely cumbersome. Structured meshes had to live at known memory locations and
needed to be wrapped in an unstructured layer so different mesh types could be stitched
together. When multiple structured meshes came together the same mesh Entity had to
live at multiple known locations. Extruded and revolved meshes were truly hybrid in that

\

i

some of their topology was computed and
invoked some action that caused an Entity to relocate the bookkeeping involved with
abstracting the bookkeepin

Also, we expended a trying to keep our design and
implementation efficient n though we were able to design a

rmance was starting to become a
problem. Actual t but roughly speaking our final
TIGER-I1 10 times slower than its tuned FORTRAN.

required memory was similar but slightly larger -1.4X (TIGER-I1 versus FORTRAN DSI
EMCC research version. Most of the versions of DSI actually require more memory than
TIGER-I1 but this is due to making .conservative array size estimates. The 1.4X was
calculated some time ago using theoretical DSI minimum required memory. The details
have been lost and are only included to give some simple sense of memory overhead.)

On one hand, future physics packages would be spared much of this complexity, and after
all, the insulation of the physics from the bookkeeping was what we were trying to
achieve. There would hopefully be many physics packages but we only needed one
bookkeeping package and this was essentially written. On the other hand, through our
research we discovered ways to significantly reduce the complexity of our
implementation and ways to further improve the memory overhead and flexibility of our
interface.

A major redesign and implementation of our abstractions would be a huge undertaking so
late in the project even if we used the latest in modem software techniques. However, the
expected increase in capability, flexibility, maintainability, and performance, as well as
the expected decrease in complexity would dramatically improve this research effort. It
was a very tough decision to make.

For above mentioned reasons (as well as the Attribute tagging not being as general as was
deemed necessary, difficulties doing mesh reconciliation over multiple processors, and
lack of thread safety), it was decided that TIGER-I1 would be discontinued, and TIGER-
111 was brought into being. Having an unplanned third version start so late in the project
meant that we would not have the time to put new physics into the last version to
demonstrate its capabilities but the core of our research thrust was to investigate flexible
abstractions to insulate the physics from the bookkeeping.

Design Overview of TIGER-I11

TIGER-I11 was designed to alleviate the deficiencies of TIGER-11. One of the
implementation complex and most time consuming (and never actually completely
debugged) parts of the coding for TIGER-11 was the reconciliation routine. TIGER-IJI

did away with the necessity of after the fact reconciliation by examining each incoming
node and determining if it had already been loaded from a previous mesh file. TIGER-III
tries to address bookkeeping issues in a more fundamental way than did TIGER-I or
TIGER-11. The following sections describe an overview of three API libraries developed
in the project. The three appendices are large machine generated text documenting the
current state of TIGER-HI’S API. The automated appendices are far from polished and
have many grammatical, spelling, syntactical, or outdated comments. The appendices are
included for completeness and to help supplement many details missing in the following
sections.

The computer science aspects of this project are not called out specifically in this
document. It is the authors’ intent to describe the design patterns used in TIGER-111 in a
computer science publication after the implementation of three libraries is finished. Here
we will just give an overview of the large packages that constitute TIGER-EI’s API.

Container Classes

Large arrays of data are ubiquitous in scientific computing. Older programming
languages such as C and FORTRAN had built in support for fixed-length arrays.
However these arrays were not allowed to grow or shrink in size, and they were not
“safe” in the sense that it was possible to accidentally over or index these arrays. The
C++ language allows the user to create user-defined array classes than can grow or shrink
in size and can be made safe. In addition, other general-purpose container classes such as
trees, lists, maps, etc. can be easily constructed in C++. Through the C++ template
mechanism these containers can hold arbitrary objects. This facilitates software re-use
and promotes more robust code.

The Standard Template Library (STL) is a Ctt- library of general-purpose containers
such as arrays, lists, maps, etc, and associated algorithms that operate on the containers.
This library is now standard with most commercial compilers, and free versions are
available on the Internet. Unfortunately in the early phases of the TIGER project the STL
was still not 100% standard and it was deemed too inefficient for scientific applications.
Hence, we decided to develop our own hierarchy of general-purpose container classes
and algorithms. In addition we developed some extremely useful general-purpose
container classes that are not found in the STL. Also, much effort was made to make all
of the TIGER-III container classes thread safe.

The TIGER-111 Array classes are arranged into a hierarchy that uses both inheritance and
composition. The lowest level classes are the Heap array and Stack Array classes. These
classes are simple fixed-length arrays that live on the heap and stack respectively. These
arrays use the [I operator for access and thus mimic the built-in array syntax. These
arrays do check for over and under indexing. It is not intended that these classes are used
directly, rather they are used to construct other more sophisticated arrays.

The Adjustable array is an array that can grow or shrink in size automatically. Adjustable
arrays are derived from Stack array classes. These arrays also use the [] operator, but they

do not check for overflow since they are allowed to grow in size. The Adjustable array
works by keeping track of the number of items in the array. When the Adjustable array is
required to grow (either automatically or by user demand) new memory is allocated, the
data is copied from the old memory to the new memory, and the old memory is freed.
This operation of allocating and de-allocating memory has some disadvantages. First,
memory can become fragmented, which will result in the program running out of large
blocks of inemory. Secondly, if data pointers outside of the array were pointing to data
inside the array, after the memory reallocation the pointers are invalid (the well-
documented dangling pointer problem). A memory pool that obtains large system blocks
of memory is used to help circumvent memory fragmentation. Adjustable arrays are
good for small (few) to medium (few hundred thousand) elements. Huge arrays should
be built using Noncontiguous arrays.

The Noncontiguous array is adjustable but items in the array never move, hence the
Noncontiguous array does not suffer from memory fragmentation or dangling pointer
syndrome. To the user, a Noncontiguous array behaves exactly like an adjustable array.
The Noncontiguous array contains within it an Adjustable array of blocks. The
Noncontiguous array works by allocating small non-contiguous blocks of memory as
needed. Additional bookkeeping is performed internally to keep track of the blocks. Due
to this bookkeeping, a Noncontiguous array is slightly less efficient than a standard
Adjustable array. The Noncontiguous array can not be found in the STL, and the
Noncontiguous array is an essential element of the TIGER-III Entity-Attribute data
structure.

A Reference Noncontiguous array is a specialization that hides data common to all items
in a block in the block header. This is to minimize memory usage by eliminating
redundant storage of like data. In conjunction with the Memory Pool, large blocks of data
are stored at specially aligned memory locations. This allows the fixed memory of all our
Entities to be 2 pointers instead of 3, resulting in 50% savings of memory overhead.
Also, by storing extra information in the header of each block which is placed at specially
aligned memory locations, running indices can be stored. This hidden data allows us to
efficiently compute global contiguous numbers for every Mesh Entity and Attribute
across all processors storing no local data within an Entity. The use of the Reference
Noncontiguous array is an essential key to TIGER-Ill's overall memory and CPU
efficiency.

A Sorted array is an array that is always kept internally sorted. The sorted array is derived
from Adjustable array. The array provides random read access but not random write
access. The only write access is an insert() method that inserts the data item in the
appropriate place using a binary search algorithm.

The Container class is a decorator class' used to add functionality to all of the above
array classes. Specifically, the Container adds relational operations to the arrays and it
facilitates the copying of data from one type of array to another type. In addition, the
Container decorator adds pack() and unpack() methods required by the communication
class.

A Registry is a Sorted array of Pairs, where a Pair consists of a Key and of a Data item.
The Pairs are sorted according to the value of the Key. Common use of a Registry is to
associate character strings or integers with pointers to functions or other objects.

A Balanced Binary Red-Black Tree (BBRBT) is a data structure where the data items live
on the “leaves” of the tree, with the leaves organized by a series of branches that split into
two and all originate from a single root. The BBRBT behaves like a Sorted array, it is the
internal implementation that is different. The Sorted array suffers from the same memory
movement problems as the Adjustable array. The BBRBT minimizes data movement,
which can be important for maintaining very large sorted containers. Insertion and
deletion of items approaches a constant time for large data sets.

An Oct Tree is a three dimensional variation of a binary tree. An Oct Tree is an ideal data
structure for storing (x,y,z) triplets. In simple terms, space is divided up into cubes and
triplets are put into the appropriate cube. Determining if a given (x,y,z) triplet exists in an
Oct Tree scales as logorithmeticaly, hence it is fairly efficient. An Oct Tree can be
memory intensive, and special care was used to implement the code in a memory
conservative fashion. The Oct Tree is an essential part of the Mesh class.

To summarize, the TIGER-III framework has several standard container classes that are
used thought the framework. These classes all use the C++ template mechanism. Much
effort went into to making these classes efficient both in terms of memory usage and in
CPU time. These container classes all use the Memory Management class and the
MonitorMutex class that are described below.

Miscellaneous Utility Classes

The TIGER-III framework provides some low-level utility classes. In simple terms, a
utility class is a class may be used by all the other classes and is treated as if it were an
intrinsic part of the development environment.

The String class is used to represent character strings such as “Hello, World”. Most
modern C++ compilers come with a built in String class, but the built in String class is
not particularly efficient. The TIGER-III string class is basically an array of characters,
with some additional member functions for relational operators and type conversion

The Memory Management classes (Memory Pool, Memory Stamp, and Memory
Manager) are used to manage the allocation and de-allocation of memory and to gather
statistics on memory usage. These are low level classes are not intended to be used by the
user, instead these classes are used inside of the other TIGER-III classes such as the array
classes. The memory is allocated in huge blocks of data and is split into smaller data
chunks that are specially aligned. A user can mask the least significant bits off of the
memory and jump to that memory location that contains extra data that all items in the
Memory block share. Common uses are to store pointer addresses that every item in the

block has in common or to store running block offsets that can be used in conjunction
with an item’s raw address to obtain unique identifiers. These methods are used very
frequently throughout TIGER-111 and often facilitate huge memory savings.

The Monitor, Mutex and Thread classes are for use in a multi-threaded environment.
These classes are used to create threads and lock down objects so that only one thread can
access them at a time. In simple terms, a thread is a subroutine that is running
independently and in parallel with the main program. Most modem nonscientific
applications make heavy use of multiple threads, for example in an e-commerce system
one thread may me running the graphical user interface, another thread may be writing
data to disk, while another thread may be performing data base queries. This type of
parallelism is often called task-based parallelism because each thread has a well defined
task is distinct from the tasks being performed by other threads. This is in contrast to
SPMD parallelism were each processor is performing the same task on different data.
While a small portion of the TIGER-I11 framework currently uses multiple threads, the
Monitor and Mutex classes were developed mostly to help enable research on multi-
threaded algorithms for use on clusters of S M P computers.

Communication Classes

The TIGER-III framework was designed for parallel execution on both shared memory
and distributed memory computers using the single-program multiple-data (SPMD)
paradigm. In this paradigm a single program is executed simultaneously on multiple
processors and each program has direct access only to a portion of the total amount of
memory. In other words, data such as the mesh, the fields, etc. is distributed across all of
the processors. This approach is also sometimes referred to as domain decomposition.
Note that some parts of the TIGER-111 framework use multiple threads of execution, this
is a different type parallelism and is discussed in another section.

In the SPMD paradigm the processors often need to exchange data. This communication
is referred to as message passing. The TIGER-III framework uses the Message Passing
Interface (MPI) library for all message passing. The MPI provides functions for sending
and receiving messages, for synchronization of processors, and for collective operations
(summation, maximum, etc.). The purpose of the TIGER-III C o r n classes is twofold: 1)
to collect all MPI function calls into a single file for ease of maintainability, and 2) to
facilitate the communication of arbitrary C++ objects. The former objective is both
standard and trivial; the latter objective was non-trivial due to the fact that MPI has a C
(or FORTRAN) interface and is unaware of C++ objects. The starting of a MPI process,
synchronization, and collective operations are supported by the TIGER-JII Comm class,
but since these are fairly standard operations, they will not be discussed further. The
communication of arbitrary C++ objects is discussed in more detail below.

It is important to review some basic aspects of C++ classes and objects. The basic C++
data types such as int, float, double, char, etc. are considered to be intrinsic classes. An
instance of a class is an object. The MPI library is capable of communicating these
intrinsic objects, or arrays of these objects. A user-defined class is composed of intrinsic

classes and/or other user-defined classes. The TIGER-III classes such as Entity, Attribute,
Species, etc. mentioned in other sections of this report are user-defined classes. It is these
user-defined classes that MPI does not know anything about, hence the main purpose of
the TIGER-111 C o r n class is to facilitate the communication of other TIGER-111 classes.

It is undesirable for the TIGER-III C o r n class to have detailed knowledge of the other
TIGER-111 classes; data hiding is a basic tenant of object-oriented design. If the TIGER-
I11 Comm classes did have detailed knowledge of the other TIGER-III classes the
software would not be extensible or scalable. But how can the TIGER-111 Comm class be
“in charge” of communicating all the various TIGER-111 objects if it has no knowledge of
what is inside of these objects? The following is an example:

Consider class A which contains an int and a float, and class B which contains a string
and a pointer to an object of type A: (the following is pseudo code)

class A { class B {
int x; char name[6] = “Foo”;
float a; A *ptr-to-an-A;

1; I :

Let’s assume that on processor 1 we have a properly initialized object of type B named
Foo, and we want to send Foo from processor 1 to processor 4. We have an instance of
the Comm class that is responsible for communicating Foo. How does the Comm object
know what parts of Foo to communicate? Should a shallow-copy (send the pointer) be
performed or a deep copy (send what the pointer points to) be performed? An additional
complication is that the MPI library cannot directly communicate objects of class A or B
even if the Comm class knew what parts to communicate. The solution to this dilemma
was to require every TIGER-I11 object that may be communicated to have both a pack()
and an unpack() method. These methods packhnpack the object into/out-of a buffer. The
Comm class then sends and/or receives the buffers. This process is recursive; the
recursion terminates when the Comm object is given an intrinsic object that it knows how
to deal with. The Comm class performs the pacldunpack of intrinsic objects, since it is
not possible to endow an intrinsic class with a method.

To complete the example, the following is the sequence of events that enable the
communication of Foo from processor 1 to processor 4:

The Comm object attempts to communicate Foo, but since Foo is not an intrinsic object
the Comm class tells Foo to pack himself into a buffer; the Foo object packs the character
string name into the buffer (a character string is an intrinsic class). Foo knows that he
needs to perform a deep copy of ptr-to-an-A, so he de-references the pointer and tells
the object of type A to pack itself into the buffer; the object of type A packs the int and
the float into the buffer, as int and float are intrinsic classes; the Comm object sends the
buffer to processor 4; 5) on the receiving processor the above process is repeated in
reverse order.
To summarize, TIGER-111 objects that are to be communicated must have pack() and
unpack() methods. The C o r n class uses these methods to pack and unpack the object

into/out-of a communication buffer. All communication is done using MPI-PACKED
data type. The C++ feature called template specialization is used to implement the Comm
class. The Comm class is an independent utility that can be used by other parallel
programs; it does not depend upon the rest of the TIGER-III code. The Comm class is
thread safe, which is essential if two or more threads are performing MPI
communication.

Compared to other approaches of MPI communication that use the built-in ability to
create and communicate static structured data types, the packhnpack approach is
significantly more general at the expense of performance. The performance penalty is due
to the packing and unpacking of data into and out-of buffers. Since few data structures in
TIGER-I11 are static, efficient communication of static data structures was not given a
high priority. In other words the majority of TIGER-III objects may grow and shrink
during execution of the program and the above approach remains a valid communication
scheme for these objects.

Entity-Attribute Classes

The key development in TIGER-I11 is the creation of the Entity-Attribute library. It
provides an abstraction between objects and their type. As such, a large number of these
lightweight objects(dubbed Entities) can be created and change their type at run time. The
overhead per Entity is very low (specifically, two pointers), which allows us to model
each logical object in a system, such as a node, edge, face, cell or particle, as an Entity.
While Entities were designed to model the topological features of a mesh, there’s nothing
limiting them to that role. A user could use Entities to model neurons in a neural network
for instance.

An Entity can contain one or more Attributes. As Attributes are added or subtracted the
Entity changes behavior. For example, consider an Entity that has only one Attribute, say
Material. A user can’t ask this Entity for its length because it has none. But if the user
adds an Edge Attribute at run-time and then asks for the Entity’s length he or she will .

obtain the correct solution. The fixed memory overhead for an Entity is exactly two
pointers plus any local data. So a Node Entity that had a position and no other data
would have 2 pointers and 3 floats (or doubles). An Entity does not, in general, have to
change memory location even when new data is added or subtracted which changes the
Entity’s size. Of special note is that every Attribute attached to every Entity has a unique
Global IDentifier (GID) which is contiguous across all processors but costs no local
memory overhead. (There is one exception to this, all Entities owned by one processor
but referenced by other processors must store a local Global Entity Identifier GEID
number when residing on the non-owning processor). This means that if a user tags a
random set of Entities with say copper. The user can iterate over all copper Entities and
ask a given Entity what is your copper GID and get back a number that costs no local
memory. The actual overhead is one word per large group of Entities (per processor)
although each Entity has a local copper GID unique to it. How this works complicated
and will be explained later on in the discussion.

An Attribute is a class the user builds in software. Typical examples of Attribute classes
are Nodes, Materials, Boundary Conditions, Outer Surface, Topology, Fields, etc.. . The
user defines the data and the bookkeeping is abstracted from the user. Attributes
replicate themselves across processors without user intervention. Attributes are discussed
later.

A collection of Attributes makes up an Entity.
Attributes make up a Species. The user can iterate over Entities, Attributes or Species.

All Entities with an identical set of

The data and behavior of each Entity depends on what Attributes it is tagged with. In
essence, Attributes provide type for Entities. A user can change a given Entity's data and
behavior at run time by modifying what Attributes that Entity is tagged with. Attributes
are defined by a type hierarchy, which starts with a root Attribute. Various Attributes
inherit from this root Attribute, and more Attributes can inherit from those. This is all
done at compile time though basic C++ inheritance. These Attributes (called the Type
Attributes) define the data and behavior for Entities tagged with an Attribute of that type.
Attributes that have the same class name (Type) but different data are also

distinguishable by their Kind. So an Entity can change its behavior just by changing the
data associated with one or more of its Attributes. This happens at run-time. If an Entity
changes its local data only the behavior of the Entity is changed, If an Entity changes
data that is common to other Entities then all Entities sharing that common data will
immediately change behavior. The behavior is similar to the State design pattern
[Gamma, et. al., p. 3051.

There is one instantiation of every Type Attribute that is created in the static initialization
sequence before main(). This object gives the user access to all information regarding that

I Figure 1: Example Type Attribute Hierarchy I

Type Attribute and the ability to create specific instances of this Type Attribute at run
time. These specific instances of Attributes called the Clone Attributes. Clone Attributes
define the value of data common to all the Entities that the Clones are tagged to. The
clones are created by a Factory [Gamma, et, al., p.1071 to insure that no two clones have
the same Common Data values. Doing so keeps the number of Attributes to keep track of
to a minimum and reduces the memory overhead of the system.

The Clone Attributes can be created either though the use of an Attribute-db file or user
at run time. The Attribute-db file is just an ASCII flat text file that defines Clone
Attributes that will be used every time the user's code is run. This frees the user from
having to make numerous calls to create these common Attributes in their code. The
entries in the Attribute-db file consist of a Clone Attribute name, the name of the Type
Attribute that it is a clone of and a list of data definitions that specify the name of the data
item (which must match the name defined for that data item in the declaration of the Type
Attribute), the data type (Common, Local, Computed, etc.), and the value or function
name for that data item. The Attribute-db file should be static for a given code, as the
code will depend on these Clone Attributes having being defined before the code begins
execution. Clone Attributes can be added at run time but for convenience we allow the
rest of the software to depend on the Clones in the Attribute-db file being setup.

Figure 2: Example of Clone Attributes created from the Type Attributes.

Entities can be created or modified to have any combination of Attributes, including two
Clone Attributes of the same Type, if that Type allows it. This is useful for cases such as
the interface between two materials, where the Entity should be tagged with both
materials. This requires some special handling on the part of the programmer
implementing the physics, as the programmer can no longer just ask what Clone Attribute
of that Type the Entity has. Instead the programmer must ask for a list of Clones (which

may just be a list of one), and iterate over it. An Entity can not have more than one copy
of a Clone Attribute, as this is not necessary. If an Attribute can have multiple data
values, then that data should be stored in an array, not though multiple clones.

Attributes can have three basic types of Data: Common, Local and Computed. Common
Data is data that is defined as being the same for all Entities that have that Clone
Attribute. Local Data is data that is local to an Entity. Computed Data is, as the name
implies, computed on the fly for that Entity by a user defined function. There is a forth
data type called Local Array, which is really just a specialization of Local Data allowing
an Array of data values to be stored in each Entity with that Attribute in standard C style
(that is, accessed through the C [I operator given a pointer, and without any bounds
checking). All of these data types are specializations of At-value, which can be used by a
class as the data type when it is possible that different Clones of a given Type Attribute
may store their data differently.

Figure 3: Entities with Attributes. Note that multiple Entities may point to the saine set of Attributes
and that an Entity may point to multiple Clone Attributes of the same Type.

Given a large collection of Entities and their Attributes, the most common operation that
a user will want to perform is iterating over a group of Entities with common Attributes.
For example, looping over all the Edges in a problem or looping over all the Entities

tagged with both the Type Attribute Boundary Condition which have only one up in their
Topology Attribute This is accomplished with a Filter. The user can create a Filter with a
string at run time. This allows the user to either create or hard-code a string in the code
for processing, or enter the string though a user interface at run time. That allows the user
to pick the data they want to view or manipulate it by hand without having to change a
line of code. The authors have found this feature to be one of the most useful ways to
debug the Mesh class during its creation. However, one can use the same procedure to
apply specific algorithms to specific portions of the mesh.

Figure 4: TIGER-III GUI with Filter line. This particular filter command finds all edges with 2
topological ups.

The hierarchy of all Type and Clone Attributes is the same in all processes in an MPI job.
As the Type Attributes are created at compile time and their static instantiations are
created before main() is called, these are automatically the same in all processes before
Communication is even initialized. Once the program has started, a specialization of
Factory called CommFactory is used to create the clones. The CommFactory will create a
unique instance of every Clone Attribute in each process.

The CommFactory works asynchronously through the use of threads running in every
process. When a Type Attribute is initialized in a multiprocessor environment, it starts a
thread to handle the creation of its clones in that process. Then, when the user requests a
Clone of that Type Attribute, the CommFactory frrst checks if it already exists in that
process. If it doesn't exist, the CommFactory requests the given Clone Attribute from a
designated process (usually process 0). This serves as a deliberate serialization so that if

two processes request the same Clone Attribute at the same time, when the designated
process is done cloning the first request, it knows there's nothing to do for the second
request and only one instance of that Clone Attribute will be created (as it should be). If
the designated process actually needs to clone the given Attribute, then a message is sent
to all other processes with the argument passed to CommFactory and the new Clone
Attribute is simultaneously created in all processes. An acknowledgement is then sent
back to the process that originated the request so that the new Clone Attribute can be
found and returned to the user.

The method described above may not work well depending on the underlying thread
implementation. The problem manifests itself as the number of Type Attributes increases.
There is one thread per Type Attribute, hence as the number of Type Attributes increases,
the number of threads to assist the cloning operation increase. These threads spend most
of their time idle, waiting for a message telling them to create a clone for the Type
Attribute they support. Some Machines, such as the SGI (IFUX 6.5.5) show no
degradation as the number of threads waiting for messages increases. Other machines
though, such as the Compaq Alpha (Digital UNIX 4.0), decrease in performance as the
number of latent threads increases. Both machines are four processor machines running
the MPICH shared memory message passing library. Hence, the threads aren't truly
latent; they're polling the MPI library to see if they have a message waiting which
requires that they lock down the MPI library as MPICH isn't thread-safe. The problem
may be solved though more careful attention to thread scheduling (right now all threads
are running with the same priority with the default scheduler), or by using a thread safe
MPI library so that the threads could perform blocking receives and hence be truly latent.
Alternatively (what may be the best fix), the architecture could be changed such that one
thread handles the cloning for all Type Attributes.

All the Entities in a program (or at least in one process) live in an Entity Container. A
given Entity is uniquely identified by its position within this container. Within a single
process, the address of that position is sufficient and is the most direct, efficient and
hence frequently used way to access an Entity. Across all processes, Entities are assigned
GEIDs, or Global Entity IDentifiers. An Entity's GEID is it's position in the Entity
Container plus the number of Entities on processes lower in rank than the current process.
This number or address is static: no matter what operations you perform to an Entity
(such as adding or removing Attributes or changing data values), the Entity's position in
the Entity Container remains the same.

An Entity is really nothing more than a pointer to its local data. Groups of Entities that all
have the same list of Clone Attributes (and hence the same amount of local data) are
managed collectively by a Species object. Species is hidden from the user such that they
should never need to access it directly. Essentially, it provides an array for local data and
a list of pointers to the Attributes the Species represents. There is one entry in this local
data array for every Entity that is managed by a given Species with enough raw data
space to store the local data for that Entity and a pointer back to the Entity itself. This
local data space does not define the Entity, so when an Entity has one of its Attributes
added or removed, the local data space for that Entity is moved to the Species

representing the new combination of Attributes and Entity's pointer to its data is updated,
but the Entity itself doesn't move.

Figure 5: Entities being managed by Species.

Species keeps two lists of Attributes: the list of Attributes that it was created with as well
as a list of Species Specific Attribute Copies. The Species Specific Attribute keeps some
information on how to access its Local Data for Entities of that Species, specifically an
offset into the local data space. The Species creates these Attribute Copies during its
creation. If an Attribute has no Local Data, and hence, no need to store an offset in order
to access all of its Data, the Species will just a pointer to the Clone Attribute that it asked
for a copy of.

Figure 6: Entity-Attribute Structure with Species Specific Attribute Copies.

Figure 7: Entity-Attribute Structure after an Entity has changed one of its Attributes.

As it is the Attribute that contains the knowledge of how to access the Local Data for a
given Entity, it is that Attribute that is called to access any of the Data that it has defined.
This is accomplished by fist requesting the instance of a given Attribute for a specific
Entity. The Entity will pass this request on to its Species which then looks up the
Attribute by ID in a table and returns the pointer to the Species Specific Copy of that
Attribute. This can be done for any Clone Attribute or Type Attribute in the system. If the
Entity does not have the requested Attribute, the user will get a NULL pointer. Recall
that if the Entity has multiple Clones of a Requested Attribute, it is indeterminate which
Attribute will be returned; the user should ask for the list of those Attributes instead.
Once the user has a pointer to the appropriate Shared Specific Attribute Copy, any of that
Attribute's accessor functions may be called using the Entity as an argument. The data
accessor function can either access the data using the Entity and the stored offset, pass the
Entity to a user defined function, or ignore it and directly access the Common Data. The
procedure in the previous paragraph can be very cumbersome, especially since there are
numerous pointer de-references and casts involved. In order to spare the user from having
to repeat such a sequence needlessly and with the high potential of creating syntactic
errors in the code, the EA macro was developed. The EA macro takes two arguments: A
pointer to an Entity and the name of the Attribute Type the user would like from that
Entity. The macro expands to retrieve the correct Attribute pointer for that Entity and that
Type Attribute and allows the user to directly call the data accessor function from there.

An Entity is only owned by one process, however any other process can hold a copy of
that Entity. These Entities are called Ghost Entities. A Ghost Entity is retrieved from the

process that owns it by passing that Entity’s GEID to the get-entity function. Hence, the
user must know the GEID of the Entity they want. This is typically accomplished by
virtue of having a connectivity between Entities. The Topology of a Mesh is the de facto
example of this connectivity. The get-entity function is another example of asynchronous
communication in TIGER-III. When the get-entity function is called, it first checks if the
requested Entity is already in this process. If it is not, then get-entity sends a request to
the process that owns the requested Entity (which get-entity can determine because the
GEIDs are assigned to processes in blocks. That process has a transporter thread that
receives the request and returns the list of Clone Attribute IDS that the requested Entity
has and the Local Data for that Entity. Right now the Local Data is just sent as a group of
bytes, so it will only work across homogeneous architectures within a given mpirun (as
heterogeneous architectures will likely have different sizes and alignment for the data as
well as different byte orderings). This is not a significant limitation given the lack of
heterogeneous low-latency computing clusters at this time. The process that owns the
Entity will tag that Entity with an Exists-on Attribute to denote that the requesting
process has a copy of that Entity. The Entity is received and unpacked by the requester.
When the requester unpacks the Entity, the Entity will be tagged with the Ghost Attribute
to denote that it is owned by another process.

Given the organization of Entities by Species, the implementation of the Filter class is
relatively simple. First the Filter finds the Type Attributes and Clone Attributes that
fulfill the user’s request. The list of Species for each of those Attributes can be considered
to be a set. Depending on the operators specified in the filter string, the Filter will take
unions or intersections of the sets. The set of Species that remains after this operation
contains the Entities that the user wants to iterate over. The actual iteration process
hidden by the Filter is nothing more than a double loop. The outer loop over the set of
Species and the inner loop over the Entities of the current Species. The primary limitation
in this approach is that Entities can not be filtered based on their Local Data values. This
could be corrected through the use of a Visitor class that uses a Filter to get a group of
Entities which it can then iterate over, returning only the Entities that the user has
requested.

The Data for the Entities and Attributes should be the same in all processes. In order to
do this, when a Common or Computed Data is updated for a given Clone Attributes (or
one of its Species Specific Copies), a message is sent to the mass mutator (so named as it
is essentially changing the values of Attributes for all the Entities with that Attribute)
thread on a designated process (in order to create the same serialism as happens in the
Attribute cloning process) which dispatches the message to all other processes. The
message specifies the Clone Attribute to be updated, which Data is being updated and the
new Common Data value or Computed Data function. Each process will find the given
Data in the given Clone Attribute and pass it the new value or function. That Data will
get the new value or function for the Clone Attribute and all of its Species Specific
Copies.

Updating Local Data is slightly different because Common and Computed Data should
always be updated in all processes, but Local Data should only be updated when the

Entity for that Local Data is a Ghost Entity in some process. Because all Entities of a
given Species have the same Attributes, all of them will have the same Exists-on or
Ghost Attributes. So a flag is stored in the copies of Data that a Species Specific Attribute
Copy has, indicating whether or not the Entities of that Species need their Local Data
communicated to some other processes when it is updated. If this flag is not set during a
Local Data update, the new data value is pounded into the space designated by the offset
into that Entity's local data space. If the flag is set, the Exists-on or Ghost Attribute for
that Entity is found to determine what process owns that Entity. A message similar to the
one described for Common and Computed Data is created with the addition of the GEID
of the Entity in question. This message is sent to a mutator thread in the process that
owns the Entity (again, an imposed serialism is created). That process will find the given
Entity, see what processes it has an Exists-on Attribute for, and propagate the message to
those processes. The data value is then updated on all processes with that Entity
simultaneously.

The mutator thread can handle more than just updating Local Data. It also handles the
removal, addition or setting of Attributes to or from an individual Entity, or the removal
of an Entity altogether. The process is virtually identical to the process of updating Local
Data. When a user requests one of these operations and the Entity exists in another
process, a message containing the operation type, the GEID and the data needed for that
operation (such as the list of Attribute IDS to add to the Entity) is sent to the local mutator
thread. The mutator thread propagates the information out to all processes containing a
copy of that Entity and the operation is performed by all processes simultaneously.

Mesh Classes

The Mesh class has been the driving factor behind the development of the Entity-
Attribute structure. The Mesh class provides an abstraction for any Cell, Face, Edge, and
Node type topology that a physics code may want to use. The mesh is initialized with a
file that lists the mesh parts (by filename), and the type of mesh that is in the part file
(unstructured, structured, warped, etc.). These are the meshes that will be stitched
together and decomposed across processors, essentially defining the space in which the
physics code will do its calculations. The Mesh class provides an interface such that the
physics code does not need to be concerned with what type of mesh its working on, or
what the partitioning of that mesh across all the processors of a massively parallel
machine is.

A great deal of the setup for use of the meshes in this manner is performed by the TIGER
I11 pre-processor (PreTiger) and the Mesh Readers. PreTiger only needs to be run once
for a given collection of mesh parts. It will read in the mesh parts using the Mesh
Readers, partition the parts across the processors that it is running on, and write out
binary files to be used by the TIGER classes when the physics code is run. The primary
limitation that it has is that it will only partition the mesh for the number of processors
that it is running on, hence the physics code must be run on the same number of

processors. If the number of processors for a run is changed, then PreTiger must be re-run
to re-partition the mesh parts for the new number of processors.

PreTiger begins by creating a Mesh Reader for every part in the mesh parts file. The
Mesh Readers are a hierarchy of classes to handle the reading of ASCII or binary mesh
part files at various levels of abstraction. The root Mesh Reader is a virtual class that only
defines those members that are applicable to all mesh part files, such as a function to
retrieve the number of zones. Various types of abstract Mesh Type Readers, such as
Warped and Unstructured inherit from Mesh Reader to define the interface for the
instantiation of specific types of Mesh Readers, such as unstructured or warped. Using
these readers, PreTiger determines the size of each part (in number of zones) and factors
that with a weight depending on the type of mesh it is (i.e. Structured meshes have a
smaller memory footprint than unstructured, so more Structured zones can be fit on a
given processor).

Given the relative size information for each part, the parts are assigned processors: one
part may be spread across multiple processors and one processor may be assigned
multiple parts. The algorithm is designed to balance the work between processors without
splitting a part between so many processors as to unnecessarily increase the
communication throughout the system. Each processor will then process the meshes to
which it was assigned. If it is the only processor assigned to that mesh, the mesh is read
in and dumped out in binary format (for efficient reading when the physics code is
started). One binary file is created for structured meshes, three binary files are created for
unstructured meshes (one for nodes, one for cells and one for special surfaces).

If a structured mesh needs to be partitioned, a block partitioner is called. The block
partitioner algorithm recursively breaks the problem down into smaller blocks until the
number of blocks is equal to the number of processors assigned to that part. The blocks
remain roughly the same size and retain a near-optimal area to surface ratio. Tests have
shown that the block partitioner can break the problem to within 2% of the optimal
partitioning on a moderate sized part of odd dimension across an odd number of
processors. In general, the load imbalance decreases as problem size increases.

If an unstructured mesh is to be partitioned across multiple processors, those processors
create a MPI Communicator [I to talk amongst themselves. Each processor reads in a
section of the cells from the part file and the processors use the nodes in common
between cells to determine the basic connectivity of the cells. This information is put into
a graph form and passed to ParMetis[], which performs the domain decomposition on the
part and assigns what processors work on what cells. The cells are then sent to those
processors. The nodes and specials are read from the part file, again with each processor
reading just a piece of the file. Each processor then requests the nodes (and specials
associated with those nodes) from the processor that read them in, and the nodes returned
to the processors that requested them. Finally, the nodes, cells and special surfaces that
have been assigned to a given processor can all be written out to disk in their separate
binary files. This entire procedure is obviously an over-simplification. There is a lot more
book keeping involved to ascertain who read in what and where it currently is.

Furthermore, the entire procedure is multi-threaded for efficiency, for instance a
processor will request the nodes that it needs at the same time as the cells are being
written to their own binary file.

The partitioning of unstructured meshes is a late added feature to TIGER-III and, while it
is complete, it is not yet functional due to problems with MPI communication. The
foremost problem that has been encountered is with MPI Communicators in the SGI
IRIX MPI implementation. PreTiger depends on the processes in a communicator to be
numbered from 0 to n-1 where n is the number of processes in that communicator[].
Instead, on the SGI they retain the same rank they have in MPI-COMM-WORLD.
Hence, if processes 2 and 4 are the two processes in a communicator, PreTiger expects
them to be numbered 0 and 1 for that communicator. Instead, the processes remain
numbered 2 and 4.

Once the mesh is partitioned and saved in a binary file format, the actual physics code
based on the Mesh class can be executed. The same parts file used for PreTiger is used to
initialize the mesh class. Each process sees if there's a binary file for that part created for
that process. If there's not, it can go on to the next part. If there is, then the appropriate
mesh part (unstructured, warped, etc.) is constructed.

Each node, edge, face and cell is represented by a Mesh Entity, which is a specialization
of Entity that understands mesh topology. A Mesh Entity is an Entity with the Topology
Attribute. The Topology Attribute defines the number of ups or downs a Mesh Entity has,
as well as provides a place to store those ups or downs for unstructured meshes (the ups
and downs are Calculated Data in structured meshes, hence the memory savings). The
ups and downs for unstructured meshes are stored as Local Arrays. Local Arrays can be
tricky to deal with, particularly when an item (such as an up or down) needs to be added
or removed. This is the primary motivation behind the Mesh Entity class, as it
encapsulates all this complexity from the rest of the system. All of the Mesh Entities for
all parts in the system are stored in a single Entity Container, which knows how to
manage them collectively.

All of the structured parts need to be read in and constructed first. Structured parts (both
basic and warped) are defined by their size and origin. These are stored in a Cfen-block
(Cell Face Edge Node Block Cfen-block) object which handles all the calculations for
moving through the topology of a given structured block. The Cfen-block specifies how
many Mesh Entities are required to store that part, and a block of that many Mesh
Entities is allocated from the Entity Container. Most of these Entities have no overhead
other than the basic two pointers: all of their Data is Common or Computed. The main
exception is the local space to store the positions of nodes in a warped mesh. The second
to outside layer is pseudo-unstructured, that is, it's labeled as being unstructured and it
stores the ups and downs locally. This is because the Mesh Entities on the outside layer
might already exist (for instance if two structured mesh parts connect). In this case, the
Mesh Entity isn't duplicated to maintain the structured ordering, rather the existing Mesh
Entity is used and the second to outside layer's ups or downs will point to it.

It can easily be determined if another node already exists in our problem space by placing
all of the nodes in an oct-tree. Each node is inserted into the oct-tree by position. Then,
before a new node is created, the oct-tree can be checked to see if that node already
exists. If it does, then the existing node is used. This allows meshes to be easily stitched
together such that all the mesh parts assemble into one global topology. Each node stored
in the oct-tree is given a tag. If the tags do not match, the nodes will be multiply inserted.
Most tags will be a default value, however coincident nodes, such as will appear on slide
surfaces or special electromagnetic boundary condition surfaces can use different tags to
create a logical boundary to the problem at that location.

Unstructured mesh parts are created by reading in all the nodes for that part, and creating
a Mesh Entity for each one that doesn’t already exist. Then the cells are read in, a Mesh
Entity is created for each one, and all the nodes for that cell are located. Any edges or
faces needed to describe that cell that don’t already exist are created and the nodes, edges,
faces and cell are connected together through the addition of the respective ups and
downs.

Figure 7: Two mesh parts (one with two cells, one with one cell) loaded in together and treated as a
single mesh.

Once all the mesh parts are read in and constructed, this process has all the Mesh Entities
for which it handles the physics. However, physics doesn’t conveniently stop at the
process boundaries. The user needs to be able to access and update Mesh Entities that are
topologically adjacent to the ones controlled by this process. Hence, once local mesh
construction is complete, global mesh construction takes place. First, the global problem
space is broken up into sectors. Each process enumerates what sectors it has nodes in

though the use of the oct-tree. This list is sent to a designated process (usually 0) which
returns a list of the processes this process shares sectors with. This is the neighbor list for
this process, to first order. The outer layer of nodes is sent and received from every
process in that neighbor list. Ownership is determined for each node that is shared with
another process. Specifically, the process with the highest rank that has a node owns it.
The node is tagged as a Ghost node in all other processes. This means that the process
that is highest in rank will own its entire outer surface, whereas process 0 will only own
any part of the outer surface that forms the outside boundary to the problem. The
ownership of edges and faces on the outside surface can be similarly determined,
however those Mesh Entities only need to be sent to the processes that have one of the
nodes they connect to (as determined in the previous step). Finally, the ups, downs and
any special Attributes are consolidated in the process that owns each Mesh Entity on the
outer surface. This information is passed to the processes that store those Mesh Entities
as ghosts.

The ups and downs are usually stored as Mesh Entity pointers. This presents a problem if
a Mesh Entity in this process refers to Mesh Entities of which there are not copies in this
process. In that case, the GEID for the Mesh Entity is stored instead. This creates a new
problem: there may not be a discernible difference between GEIDs and Mesh Entity
pointers. Hence, instead of mixing the two, a Mesh Entity either has Mesh Entity pointers
for all of its ups and downs, or it has GEIDs for all of its ups and downs. The former is
either a Mesh Entity that is owned in this process, or a Ghost Mesh Entity. The latter is
referred to as a Phantom Mesh Entity (as in a Mesh Entity that's not really there). The
first time a phantom's ups or downs are accessed, all of its GEIDs will be converted into
pointers and it will become a normal Ghost Mesh Entity. The resulting mesh in any given
process will be surrounded by a layer of Ghost Mesh Entities of arbitrary thickness. The
outer most layer stored in any process will consist of Phantom Mesh Entities. This
excludes the true outer boundary of the problem, of course. The main advantage of this
approach is that it allows the physics code to access zones owned by other processes
arbitrarily. Some codes only require a single layer of ghost zones. Others have
complicated stencils that may go five ghost zones deep in places. Regardless, the user has
been relieved of the burden of finding, loading and managing those ghost zones.

Summary

Our Experiences using C++

In summary, we have learned much during this investigation. There are many
chalIenges to using object-oriented software techniques in scientific settings. While we
believe the benefits still far outweigh the limitations. The following three paragraphs
describe some general limitations we have found using Ctt- on the project. The
comments are specifically directed to our experiences on this project trying to use C++
for a specialized high-performance scientific applications.

We spent too much time wrestling with C++ compiler deficiencies.

- lack of ANSI standard C++ implementations (This has improved
significantly over the last 3 years), especially full template
support, member template functions

We wrestled too much with C++ syntax and performance issues. Many times
throughout the project we would come up with a potentially acceptable design for a given
set of classes but the implementation was very difficult. Often the most elegant solution
was too liberal in its use of virtual pointers. However, virtual pointers are expensive both
in memory and CPU usage. The overhead of a virtual pointer is not limited to the virtual
call itself but also limits the compiler’s ability to inline and optimize. First
implementations could be 5 times slower and use significantly more memory. These
inefficiencies by themselves might be acceptable but typically grew slowly to
unacceptable levels.

A good deal effort was expended on the project to trying to make Entities abstract.
Having Flyweight [Gamma, et. al., p. 1951 objects is very general and allows a great deal
for a great flexibility. Moving the abstractions up to deal with collections of items and the
management of containers reduces the abstraction performance penalty significantly.
TIGER-I implemented a series of container classes and management classes that
manipulated data structures consisting of large sets of raw data. TIGER-II and TIGER-III
added the capability of abstracting at a lower level. Every Node, Edge, Face, Cell in the
entire program could be a real object. This approach gave us a great deal of object-
oriented freedom but also significantly increased the number of performance and
implementation issues we had to address.

One of the ways we were able to improve efficiency was by doing much of the objected-
oriented setup during the initialization phase. This helped performance but forced many
of our setup operations to occur before main() was called. Several man-months on the
project were expended trying to enforce a proper static initialization of global objects
across multiple file units. We ended up having to develop a modified Singleton design
pattern [Gamma, et. al., p. 1271 where we wrapped the initialization of static data within a
member functions. We still need to be very careful in our linking phase when we create a
library. Our solution appears to work for on native SGI and DEC-Alpha clusters
compilers, and g++ and KCC (Kuck and Associates) on the SGI, DEC, and ASCI Blue
(IBM SP-2) platforms. (latest current versions).

In retrospect:

We had 3 major design cycles in the project. At the end of TIGER-1 we were very
happy with the accomplishments. We were able to test our abstractions out by building
full working code capable of modeling a kicker structure beyond what could be done
prior to the project. It was our prototype version and we knew we could do even better

with our next iteration. We were also pleased with the progress we were making during
the development of the TIGER-I1 version. In fact, originally TIGER-I1 was to be our
fully developed final version. However, as we added more and more capabilities the
complexity of our implementation increased significantly. First we added unstructured
grids, then the capability to have multiple unstructured grids, then the ability to have
structured grids, then the capability to automatically stitch arbitrary structured and
unstructured grids together, then the ability to have extruded meshes, then the ability to
have revolved meshes, and finally the ability to have any number of any structured,
warped, extruded, revolved, or unstructured meshes together. The user interface was still
very clean and the bookkeeping details were hidden behind the interface. The
programmer was successfully insulated from many of the bookkeeping details we were
trying to abstract away. During the development of TIGER-11 we also began to test the
massively parallel abstractions out. TIGER-II's parallel implementation was only
partially completed. It worked for unstructured but needed to be extended for hybrid
meshes. TIGER-11's parallel implementation also relied on a serial pre-processor that
read in the mesh on a single processor and then called the mesh partitioner.

During the second quarter of ry'99, almost 2.5 years into the project we came to a
decision point. We were achieving our milestones and were happy with our successes.
However, although we successfully implemented hybrid mesh abstractions that provided
a simple interface to the programmer, hiding virtually all the details, the complexity
behind the interface raised concerns about the long term maintainability, flexibility, and
performance of our libraries. On one hand, future physics packages would be spared
much of this complexity, and after all, the insulation of the physics from the bookkeeping
was what we were trying to achieve. There would hopefully be many physics packages
but we only needed one bookkeeping package and this was essentially written. On the
other hand, through our research we discovered ways to significantly reduce the
complexity of our implementation and ways to further improve the memory overhead and
flexibility of our interface.

A major redesign and implementation of our abstractions would be a huge undertaking so
late in the project even if we used the latest in modern software techniques. However, the
expected increase in capability, flexibility, maintainability, and performance, as well as
the expected decrease in complexity would dramatically improve this research effort. It
was a very tough decision to make.

There was one more factor influenced the decision making process. At the same time we
were also trying to incorporate new physics into the full working TIGER-I version of the
code. The new physics was far from trivial. We were trying to add correction terms to
sources to the DSI algorithm. The correction terms were required to preserve divergence
and prevent change build-ups that often lead to instabilities. In very simple terms, the
solution to adding the correction terms involved turning the DSI algorithm inside out.
This was a good test for the Mesh abstractions. Previously we tested the abstractions
knowing exactly what physics we were going to add next. This test would in some sense
test our ability to add new physics. The addition of the current sources was not part of
this LDRD project but a Techbase project. The Ey99 Techbase report documents that

effort [I. What is relevant to this project is the lessons we learned testing out our
prototype abstractions in a realistic setting.

We successfully added the new physics much faster than would have previously been
possible, modifying the original FORTRAN version; yet we desired the process to be
even simpler. We had long since improved the interface and hid many more of the
details in TIGER-I1 version compared to the earlier TIGER-I version. However, the
overall process was still dominated by bookkeeping details. The actual physics addition
was relatively straightforward. The difficulty was that the algorithm forced us to iterate
through the mesh in a very indirect manner. So during the physics addition, we had to
get our hands dirty and go into the lower level bookkeeping aspects of the code. This is
exactly what we were trying to prevent. The experience raised several questions. Was
this example a typical or atypical situation? How often would we truly be successful in
insulating the physics for the bookkeeping?

The decision was made to build a third version called TIGER-III. Having a third version
start so late in the project meant that we would not have the time to put new physics into
the last version to demonstrate its capabilities. We felt however that the long-term future
of our research would be better served by building a better set of abstractions rather than
finishing and demonstrating the TIGER-I1 version.

TIGER-I11 is in its final stages and has no physics in it yet. However, we have
successfully moved beyond many of the difficulties encountered in earlier versions. It is
our intention to finish and then demonstrate the object-oriented research behind TIGER-
I11 in future publications. TIGER-HI'S core libraries are currently being used in another
Mesh generation LDRD project.

' Design Patterns: Elements of Reusable Object-Oriented Software; Gamma, Helm, Johnson & Vlissides;
Addison Wesley, 1994, pp. 1-395.

zow@cong o. I I nl .go I
S PARCprinter I Tue Feb 15 14:i 4:32 2000

I

t

Contents

Contents

What’s in Array.H? - 4
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

StackArray - The stack away class provides an array of the
given type and size to its children
1.2.1 operator() - Get a reference to the element at a

HeapArray - An array located in the heap 10
1.3.5 operator() - Get a reference to the element at a

given posistion 14

Adjustable-Array - An extention of the HeapArray that al-
lows the size and capacity to be dynamically adjusted 17
Blockheader - Block-header is a struct that contains data
at top of every block in a ReferenceJVcAway 22
Block - The Block class primary purpose i s to encapulate a

23 Block-header and its associated data
ReferenceBcArray - ReferenceXcArray (R-a) is an of ar-

SortedArray - A n extention to AdjustableArray that main-
tains the elements in sorted order resulting in logZ[n) searches
for a specific element 28
1.8.1 operator() .. 30
Container - Container i s a decorator class that defines com-

31

6

given position 8

ray of Blocks 25 ...

m o n operations for any container

Gid - Integer large enough to provide a unique ident i f ier
for a large number of objects across a large number of pro-

What’s in Comm.H? 36
3.1

36
3.2 Comm - Comm class 38

cessors 35 ...
Communicator - Communicator class to define more com-
plicated topologies than just MPI-COMM- WORLD

3.3 Message - Base class Message 45
3.4 Send - Send buffer 49

3.4.2 operator() - Bufler set-up 51
3.5 Recv - Receive bufler ... :. 59

cloner - Function to run i n thread to handle cloning on all
proc3 ... 65

1

Contents

5 CommFactory - CommFactoqj is an extention to Factory
that ensures that the clone of the given object is cloned
across all processors such that it ea5sts uniquely on each
processor ... 66

cloner - This is the function used in the thread that Comm-

Freelist - Free-list is a small helper class that can be used
with Container classes that have items large enough to store

6

7
Factory::initialize() spins 08 68

at least a pointer to another i tem 69

8 What’s in Memory-pool.H? 73
8.1 Prevnext - Prev-next struct is a Memory-stamp number

with prev, next pointers t o create a doublely linked list
8.2 Memorystamp - The Memory-stamp class manages the

writing and reading of the memory stamp for the Memory

Sys-block - Sys-block struct is for use as a simple linked list

74

pool .. 75

inside the Memory-pool class
8.3

8.4 Memorypool -

79

Memory-pool is a power of 2 queue memory allocator that pro-
vides memory always aligned to the requested size 80

9 Memorymanager - Memory management class 83

10 Monitor - This allows us to tmck useage of a critical sec-
tion and guarentee exclusive access when needed 86

11
88

12 Mutex - Provide a basic thread locking mechanism 89

13 What’s in Oct-tree.H? 90
90

Static - If we have threads then the word ’?Static” will be
?’ ?’ else it will be ?’static”

13.1
13.2 Oct-tree -

Octdata - Octdata a union of various pointer types

The Oct-tree class partitions 3-0 space into quantized bins to
enable quick searches that have the traditional time us memory
trade-o$... 91

14 What’s in Rb-tree.H 96
Rb-data - Rbda ta class holds the data for a given entry in
a Rb-tree 96

The Rb-tree red black tree class is meant to hold large (many

14.1

14.2 Rb-tree -
..

hundreds to billions) of data items 98

Thio pale ha. bccn automatiolb grneritcd with DOC++

DOC++ is 0 1995 by
2 bland Wundcrling

Make Z c k l r r

Contents
-

15

16

17

18

19
20

21
22

23

24

25

Reference - This creates a reference (&) to T data that is
usually newed .. 101

What’s in Registry.H? 102
16.1 Key-data - The Key-data<Key,Data> class concatenates

Key and Data into a single structure where the comparison

16.2 Registry - The Registry class allows insertion and removal

operator() - Get a reference to the i’th data value

operators are based soley on the Key

of data based on a key that is stored with the data

102

104
16.2.3

in f i e array 106

RetrieverTask - Retriever task enumemtion defininy types

Retriever - The following class is a quick attempt at a Re-

RunTime - Times a progmm (or anything else you desire) 112
What’s in Sparsematrix.H? 113
20.1 Sparsematrixrow - The Sparse-matrix-row is a decorated

Sorted-Array container that provides a few additional services 113
20.2 Sparsematrix - The Sparse-matrix is a simple convenience

114

of tasks c u m n t l y supported by the Retriever class

triever class 109

........ 108

..

class for holding entries in a sparse mutrix

Sstring.H - .. 117
Sstring -
The Sstring class allows us to convert between various data
types in addition to the usual string class utilities
operator>> - The following definitions are defined in
Sstring ... 123
Sbint - Qpedef abstracting what the Proc-dispenser,
Block-index-mapper, and reader classes think a large Inte-
g d type is ... 124
What’s in Utilities.H? 125

Class Graph .. 127

118

Thh pa~r has k e n automaticalb .merated with DOC++

DOC++ is 0 1 9 9 5 Roland Wunderling
Malt. Z6rhler

3

1 What’s in Array.H?

What’s in Array.H? ri
Names

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

typedef unsigned int

typedef unsigned int

Index unsigned index into array typedef

SIndex signed index typedef used for
pointer differences

extern Monitor
stackmonitor Provides a monitor to all

StackArrays, regardless of
their templated type 5

The stack array class provides an
array of the given type and size to
its children 6

template < class Type, Index SIZE> class
StackArray

template cclass Type> class

template <class Type> class

HeapArray An array located in the heap 10

AdjustableArray : public HeapArray<Type>
A n extention of the HeapArray
that allows the size and capacity
to be dynamically adjusted 17

Block-header is a s tmct that con-
tains data at top of eve y block in
a Reference-NcArray 22

The Block class primary purpose
is t o encapulate a Blockheader
and its associated data 23

template <class HiddenData> struct
Block-header

template <class Type, class HiddenData> class
Block

template cclass Type, class HiddenData> class
Reference l\Jc Array

Reference-NcArray (R-a) is an of
array of Blocks 25

template <class Type> class

T h i page has been automatically aencrrtd with DOC+i

DOC++ is @ l P S b Roland Wunddiw
M d t e E k l e r

4

1 What’s in Array.H?

SortedArray : public AdjustableArray<Type>
A n extention to AdjustableArray
that maintaans the elements in
sorted order resulting in log2(n)
searches for a specific element . . 28

1.9 template <class Type, class Array> class
Container : public Array

Container is a decorator class
that defines common operations
for any container 31

These array classes provide us with more safety and flexibility than the stan-
dard array operators. Safety is provided through such means as range checking
and flexibilty from adjustable arrays. There is negligable speed loss compared
with C arrays. We rely on templates heavily due to performance concerns. At
present there are no virtual member functions except for the destructors.

Currently the best performance is achieved by inlining a vast majority of the
Array member functions. Even larger sized member functions are sometimes
inlined if they are:

1) very heavily used,

2) not inlined at many places,

3) tested (in a very limited sense) to improve performance.

Obviously testing performance is compilier, system, and version dependent.
It is expected that this will change with time. Unfortunately, overall application
performance can still change by several hundred percent by changing inlines of
the Array member functions.

Maybe we could look at inlining and performance in a systematic way in the
future. For now we are just doing simple, limited in scope sanity checks.

extern Monitor st ack-monitor r 1-1

Provides a monitor to all S t a c k A m y s , regardless of their templated type

8

The p g c has k e n iutornrticillr generated with DOC++

DOC++ is 0 1 9 9 5 + Roland Wvndcrling
Make Zckler

5

1 What’s in Array.H?

Provides a monitor to all StackArrays, regardless of their templated type.
This has been done to minimize StackArray’s memory useage. Global variables
increase program complexity, and therefore should be avoided, however this one
is necessesary to keep a reasonable memory footprint.

r template < class Type, Index SIZE> class StackArray

The stack arruy class provides an array of the given type and size to its
children

Public Members
StackArray (Index)

The constructor allows us to track
stack memory useage.

The destructor allows us to track
stack memo y useage.

Monitor* monitor () Get a monitor to protect array
when multipZe threads are in use

3tackArray ()

1.2.1 inline Type&
operator() (const Index index)

Get a reference to the element at
a given position 8

1.2.2 inline Type&
ref (const Index index)

Get a reference, as in operator()
(so this needs to be protected in the
same way), but fast like operator[]
(no resizing) 8

1.2.3 inline const Type&
operator[] (const Index index) const

Find the element at the given in-
dex, just dike a standard C array

9
inline void

update (const Index position, const Type& item)
Update the element at the given
position to the given value.

inline void

6

1 What’s in Array.H?

insert (const Index position, const Type& item)
Update the element at the given
position to the given value.

1.2.4 const Type&
data (const Index i) const

Provides uniform interface f o r ar-
ray classes to access data-

Provides uniform interface for ar-
ray classes to access data-

1.2.5 Type& data (const Index i)

1.2.6 const Type*

1.2.7 Type*

Index

Index

Index

Index

void

Index

1.2.8 Index

Index

data () const
data ()
capacity () const Return the capacity of this a m y .

capacity (Index) const
Return the capacity of this a m y
regardless of index

Return the size of this array.

Return the size of this array re-
gardless of index

size () const

size (Index)

sort () Sort this array.

find (const Type& item) const
This function is guaranteed to find
the item you are looking for, or it
will die, so only call it when you
know the item is in the array

Finds the position that the given
item is at or should be at

findposition (const Type& item) const

index (Type * address) const
Find the position in the array
given the address.

template <class Rhs-type> inline void
equal (const Rhs-type& rhs)

Essentially a templatized opera-
tor= (NOT ==) used by opera-
tor= in Container

inline StackArray <Type, SIZE> &

~

9

9

9

10

10

This page has been automatically generated with DOC++

DOC++ is @I995 by Roland Wvndcvling
Mdtc Zkklcr

7

1 What’s in Array.H?

operator= (const StackArray<Type, SIZE>& sa)
Equals operator. For completness
and to remove cornpilier warnings

inline void
relocate (StackArraytType, SIZE>*)

Classed when a relocation of array
has occurred.

Protected Members
1.2.9 void setsize (const Index sz)

Set the size of array 10

The stack array class provides an array of the given type and size to its children.
This data will be on the stack provided it isn’t too large and is part of a static
or automatic (not new’ed) object.

1.2.1

inline Type& operator() (const Index index) r
Get a reference to the element at a given position

Get a reference to the element at a given position. Will increase the size and
capacity of the array as necessasary. N o t thread-safe - be sure to increment the
monitor before use (and decrease it when you’re done).

inline Type& ref (const Index index)

Get a reference, as in operator() (so this needs to be protected in the same
way), but fast like operator[] (no resizing)

Get a reference, as in operator() (so this needs to be protected in the same way),
but fast like operatoru (no resizing). Not that any of that matters for Stack
Array.

This page has been automatically generatsd with DOC++

DOC++ is 0 1 9 9 5 by Roland Wunderling
Mike Z c k l e r

8

1 What’s in Array.H?

1.2.3

inline const Type& operator [I (const Index index) const

Find the element at the given index, just like a standard C array

Return Value: s A constant reference to the element.

const Type& data (const Index i) const
1 I

Provides uniform interface for array classes to access data-

Provides uniform interface for array classes to access data-. Not thread safe:
increment monitor before use.

1.2.5

Type& data (const Index i) r
Provides uniform interface for array classes t o access data-

Provides uniform interface for array classes to access data-. Not thread safe:
increment monitor before use.

1.2.6

const Type* data () const r
Return Value: s a pointer to beginning of valid data- address space.

Not thead safe.

Thk page has becn autamatkdly gemrated with DOC++

DOC++ i s 0 1 9 9 5 b 9 Roland Wunderlina
Make &*le,

1 What's in Array.H?

template <class Type> class HeapArray

1.2.7 + r Type" data ()

Return Value: s a pointer to beginning of valid data- address space.
Not thead safe.

1.2.8

Index find-position (const Type& item) const

Finds the position that the given item is at or should be Qt

Finds the position that the given item is at or should be at. It will die if the
item is not in the array and there is not room for it; however, as StackArrays
have no concept of size vs. capacity, it acts the same as find() .

void setsize (const Index sz)

Set the size of array

Set the size of array. This member function is provided only t o allow for a
uniformity among other types of arrays. An assert failure occurs if user actually
trys to change size of an Stack array.

T h i pale has been automatic& grncrr ld with DOC++

DOC++ is 0 1 9 9 5 by Roland Wvndtrling
Malle Lirckler

10

1 What’s in Array.H?

Inheritance

Heap Array

Public Members
1.3.3 HeapArray () Default constructor 14

HeapArray (Index n)
Construct a heap array of the
given size.

Copy constructor.

Monitor* monitor () Get a monitor to protect array
when multiple threads are in use

HeapArray (const HeapArraytType> &s)

Index capacity () const Get the array’s capacity

Index capacity (Index) Get the array’s capacity

Index size () const Get the array’s size

1.3.4 inline Index
size (const Index sz)

Set the number of used elements in
this Array 14

1.3.5 inline Type&
operator() (const Index index)

Get a reference to the element at
a giuen poszstion 14

inline Type&
ref (const Index index)

Get a reference, as in operator()
(so this needs to be protected in the
same way), but fast like operator[]
(no resizing)

1.3.6 inliie const Type&

Thw ~ g c has k e n automatically generated with DOC++

DOC++ is @ 1995 by Roland Wundcrling
Make Zochler

11

1 What’s in Array.H?

operator1 (const Index index) const
Find the element at the given in-
dex, just like a standard C array

15
inline void

update (const Index position, const Type& item)
Update the element at the given
position to the given value.

1.3.7 inline void
insert (const Index position, const Type& item)

Insert the given value at the given
position 15

Index find (const Type& item) const
This function is guaranteed t o find
the i tem you are looking for, or it
will die, so only call it when you
know the item is in the array

Finds the position that the given
i tem is at or should be at 15

1.3.8 Index findposition (const Type& item) const

1.3.9 Index find-ordered-position (const Type& item) const
Finds the ordered position an i tem
should be located at if it were in-
serted in array 16

void sort () Sort this array.

Index index (Type * address) const
Find the position in the array
given the address.

template <class Rhs-type> inline void
equal (const Rhs-type& rhs)

Essentially a templatized opera-
tor= (NOT ==) used by opera-
tor= in Container

inline HeapArray <Type> &
operator= (const HeapArray<Type>& ha)

Equals operator. For cornpletness
and to remove compilier warnings

inline void

12

1 What's in Array.H?

relocate (HeapArray<Type>*)
Called when a relocation of array
has occurred.

-HeapArray () Destructor

Protected Members
Type" data- Pointer to beginning of actual data

Index size- The size of the array the user
presently has access to

Index capacity- The actual memory capacity this

Monitor monitor- Monitor for threading

inline void

array owns

setsize (const Index sz)
Set the size of the array (capacity
will change only if needed)

Type* data () Return handle to data

const Type*

Type& data (const Index i)

const Type&

data () const Return const handle to data

Return handle to data position i

data (const Index i) const
Return const handle to data posi-
tion i

1.3.1 inline Type*
newmemory (const size-t ride)

Gets memory from the m e m o y
manager 0nd calls default con-
stwctor for each newed element

16
1.3.2 inline. void

deletememory (Type *old, const size-t n-ele)
Release memory back to m e m o y
manager calling default destructor
f o r each deleted element _. . 16

An array located in the heap. Also known as Fixed Array as the capacity is

1 What's in Array.H?

fixed. By default the size is set t o be the same as the capacity, but the user can
set it to be anything from 0 -> capacity.

1.3.3

HeapArray ()

Default constructor

Default constructor. Intentionally does nothing overriding the compilier gener-
ated default constructor.

1.3.4

inline Index size (const Index sz)

Set the number of used elements in this ATQY

Set the number of used elements in this Array. HeapArray (Fa) is fixed in
capacity, but the size is adjustable.

1.3.5

inline Type& operator() (const Index index)

Get a reference to the element at a giaen posistion

Get a reference to the element at a given posistion. Will increase the size of the
array as necessasary. Not thread-safe. Be sure to incriment monitor before use
and decriment it when you're done.

Thm page has been automatidy generated with DOC++

DOC++ i s @ 1995 by Roland Wvndcrling
Make Gcklcr

14

^ " .

1 What’s in Array.H?

1.3.6

inline const Type& operator[] (const Index index) const r
~~~ 

Find the element at the given index, just like a standard C array 

Return Value: s A constant reference to the element. 

1.3.7 

inline void insert (const Index position, const Type& r i tern) 

Insert the given value at the given position 

Insert the given value at the given position. This will increase the size of the 
array if necessary. 

1.3.8 

Index find-position (const Type& item) const r 
Finds the position that the given item is at or should be at 

Finds the position that the given item is a t  or should be at. It will die if the 
item is not in the array and there is not room for it. 

~~ ~ 

Thm p g c  b s  bccn automatically gerrratcd with DOC++ 
DOC++ is 0 1 9 9 5  by Roland Wvnderling 15 

Malt- 7&klcr 



1 What's in Array.H? 

Index find-ordered-position (const Type& item) const 

Finds the ordered position an i tem should be located at if it were inserted an 
array 

Finds the ordered position an item should be located at if it were inserted in 
array. The search is sequential from the beginning of the array. Note that the 
search item will return the last valid position where all items are <= to  the item. 

1.3.1 

inline Type* newmemory (const size-t n-ele) r 
Gets memory from the memory manager and calls default constructor for each 

newed element 

Gets memory from the memory manager and calls default constructor for each 
newed element. Unless overloaded, this member function provides a single place 
where memory for derived classes is retrieved by the memory manager. Changes 
to this member function must be tied to  changes in deletememory member 
function. 

1.3.2 

inline void deletememory (Type "old, const size-t n-ele) r 
Release memo y back to memory manager calling default destructor for each 

deleted element 

Release memory back to  memory manager calling default destructor for each 
deleted element. Unless overloaded, this member function provides a single 
place where memory for derived classes is released back to the memory man- 
ager. Changes to  this member function must be tied to  changes in newmemory 
member function. 



1 What’s in Array.H? 

I I 
template <class Type> class AdjustableArray : public 
Heap Array<Type> I 

I I 

A n  extention of the HeapAway  that allows the size and capacity to be 
dynamically adjusted 

Inheritance 

e Sorted Array 

Public Members 
AdjustableArray (const Index n) 

Construct an adjustable array of 
the given size 

Adjustable Array (const AdjustableArraytType> 
&s) 

Copy constructor. 

1.4.3 inline Type& operator 

1.4.4 inline void 

() (const Index i) Not thread-safe ................. 19 

insert (const Index i, const Type& item) 
Insert the given value at the given 
position ........................ 20 

1.4.5 inline void 
insert (const Index i, const Type& item, 

const Index newxapacity) 
Set the capacity of the array to the 
given value and insert the given 
valee at the given position ...... 20 

1.4.6 inline void 

17 
Thin page has been automatically generated with DOC++ 

DOC++ k @I995 Roland Wun&rliw 
Make Zckler 



1 What’s in Array.H? 

insert (const Type& item) 
Insert the given item in the last 
position in the array, increasing 
the size of the array by  one . . . . . 20 

inline void 
last (const Type& item) 

Insert the given item an the last 
position in the away, increasing 
the size of the array by one 

inline Index 
size (const Index n) 

Set the size of the array to the 
given value. 

Index size () const Get the size of the array. 

inline Index 
capacity ( const Index newxapacity ) 

Set the capacity of the away to  the 
given value. 

Index capacity () const Get the array’s capacity 

template <class Rhs-type> inline void 
equal (const Rhs-type& rhs) 

Essentially a templatized opera- 
tor= (NOT ==) used by operu- 
tor= in Container 

inline Type* 
intersection (const HeapArray<Type> &a) 

Find the first intersection element 
between this array and a 

intersection (const HeapArray<Type> &a, 
inline void 

const AdjustableArray<Type> &b) 
Fill array b with the entire inter- 
section of elements between this & 
a. 

1.4.7 inline void 
merge (const HeapArray<Type> &a, 

const AdjustableArray<Type> &b) 
Merge this amay with a and place 
the union a m y  in b . . . . .:. . . . . . 21 

inline void 

- 
This page has brrn automatically sencrated with DOC++ 

DOC++ IS @N95 bj 18 Roland Wvndrrling 
Makc Zcklcr  



1 What's in Array.H? 

1.4.8 

push (const Type&) 
Push item on array in conven- 
tional stack fashion 

Pop item on array in conventional 
stack fashion 

Take the last i tem off the array in 
conventional stack fashion 

inline void 
P O P  0 

inline Type 
top 0 

inline AdjustableArray <Type> & 
operat or = (const Adj ustableArrayt Type>& aa) 

Equals operator. For completness 
and to  remove compilier warnings 

-AdjustableArray () 
Default destructor .............. 21 

Protected Members 
1.4.1 inline void 

setsize (const Index n) 
Sets the size of the array to  the 
given value, increasing the capac- 
i t y  if necessasary ............... 21 

1.4.2 inline void 
set -capacity (const Index new -capacity) 

Sets the capacity of the array to  
the given value ................. 22 

1.4.3 

inline Type& operator () (const Index i) 

Not thread-safe 

Not thread-safe. Use the monitor to  protect yourself by locking it down, as it 
may call set-capacity. 



1 What's in Array.H? 

1.4.4 

inline void insert (const Index i, const Type& item) r 
Insert the given value at the given position 

Insert the given value at the given position. This will increase the size and 
capacity of the array if necessasary. 

1.4.5 

inline void insert (const Index i ,  const Type& item, const 

Index newxapaci ty ) 

Set the capacity of the array to  the given value and insert the given value at 
the given position 

Set the capacity of the array to  the given value and insert the given value 
at the given position. This will increase the size and capacity of the array if 
necessasary. 

1.4.6 

inline void insert (const Type& item) 

Insert the given i tem in the last position in the array, increasing the size of the 
array by one 

Insert the given item in the last position in the array, increasing the size of the 
array by one. This member function is eqivalent to  last() and is provided for 
seamless usage Adjustable and Sorted Arrays. Note that although syntax is the 
same between Adjustable and Sorted Arrays the behavior is markedly different. 
This routine will put the item in the list regardless of whether it already exists. 

20 



1 What’s in Array.H? 

1.4.7 

inline void merge (const HeapArray<Type> &a, const 

Adjustable A r r  ay<Type> &b) 

Merge this array with a and place the union array in b 

Merge this array with a and place the union array in b. Note b is an Adjustable 
array 

I “AdjustableArray () 

DefauZt destructor 

Default destructor. Deliberately not virtual. Does nothing, HeapArray’s de- 
structor does the work. 

1.4.1 

inline void set-size (const Index n) 

Sets the size of the array to the given value, increasing the capacity i f  
necessasary 

Sets the size of the array to  the given value, increasing the capacity if neces- 
sasary. Not thread safe: designed to be called from a member function that 
already has the array locked down. 

Tha WBL has been aufomrlically gcncratcd with DOC++ 

DOC++ is 0 1 9 9 5  Roland Wvnderling 
Make &klcr 

21 



1 What’s in Array.H? 

~ 

inline void set-capacity (const Index newxapacity) 

Sets the capacity of the army to  the given value 

Sets the capacity of the array to the given value. Not thread safe: designed to 
be called from a member function that already has the array locked down. 

1.5 

template <class HiddenData> struct Blockheader 

Block-header is a struct that contains data at top of e v e y  block in a 
Reference-NcArray 

Members 
void* reference- reference tag used by the Refer- 

enceiVc-An-ay user MUST be first 
item in the header so mod to ad- 
dress operations work 

ments preceed this block 

User’s hidden data that is packed 
into top of every block 

Index runningindex running index of how many ele- 

Hidden Data 
user-data- 

1.5.1 long double 
firstdata W e  don’t know at compile time 

what the alignment of the data is 
so we will use a safe long double 

Blockheader () Default constructor 

Blockheader (const Blockheader<HiddenData>& 

Copy constructor. For complet- 
ness and to remove compilier 
warnings 

bh) 

size-t header-offset () const 

23 

This p s r  ha. bcen automatidly 8enemted with DOC+i 

DOC++ is  0 1 9 9 5  by Roland Wunderling 
Makc Zb;chler 

22 



1 What’s in Array.H? 

Return the required size in btyes of 
the block header data 

inline Blockheader <HiddenData> & 
operator= ( const Blockheader<HiddenData>& 

rhs) 
Equals operator. For completness 
and to remove compilaer warnings 

Blockheader is a struct that contains data at top of every block in a Refer- 
enceJcArray.  The primary TeaSon for this struct is t o  let the system determine 
the address of first-data. This alleviates a fair amount of pointer arithmetic. 
The Block header stores a reference pointer guaranted to be the first data item 
so that address masking can be used for quick =cess. The header also stores a 
running index of how many items proceed this block an an area for user data. 
This could be a nested class but alas some compiliers are still behind the times. 

long double first-data 

W e  don’t know at compile time what the alignment of the data is so we will 
use a safe long double 

We don’t know at compile time what the alignment of the data is so we will use 
a safe long double. firstdata is not really used other that to take its address 
for alignment calculations. 

1.6 

template <class Type, class HiddenData> class Block 

The Block class primary purpose i s  to  encapulate a BlockJeuder and its 
associated datu 

Thk wgc has been amtomitically generated with DOCt4  

DOC++ is  e1995 by Roland Wun&rling 
Maltc &hlcr 

23 



1 What’s in Array.H? 

Public Members 
Block () Default constructor 

Block (const BlocktType, HiddenData>& blk) 1.6.1 
Copy constructor . . .. . . . .. . . . . . . 24 

inline void 
initialize (void* ref, const Index runi ,  

Inititialize the block 
const HiddenData& hd) 

inline void 
reference (void *ref) 

Set the reference at the top of the 
block 

inline void* 
reference () const 

inline char* 
begin-data () 

inline size-t 
headeraffse t 

Return the reference at top of the 
block 

Return the pointer to the beginning 
of valid data 

() const 
Return the required oflset in bytes 
before beginning of data 

inline Type& 
operator[] (const Index bytes) const 

Return i tem at location bytes 08- 
set from top of block 

The Block class primary purpose is to encapulate a Blockheader and its 
associated data. This class should be nested inside ReferencelVcArray but 
alas some compiliers are behind the times. 

1.6.1 

Block (const Block<Type, HiddenData>& blk) r 
Copy constructor 

Copy constructor. For completness and to remove compilier warnings. 

This pas= ha. been automatically gcrrntcd with DOC++ 

DOC++ is @ 1995 by 24 Roland Wvndcrling 
Makc Ziwklmr 



1 What’s in Array.H? 

I 1.6.2 1 
inline Block ‘Type, HiddenData> & operator= ( const 
BlockCType, Hidden-Data>& rhs) 

I I 

Equals operator 

Equals operator. For completness and to  remove compilier warnings. 

I le7 I 

I template <class Type, class Hiddenl)ata> class Refer- 
encelVc4rray I 

I I 

ReferenceXcArray (R-a) is an of a r m y  of Blocks 

Public Members 
Referencemc Array (const Index n, 

const Index bs = 4*KILO, 
const Index jmp = 0, 
Type* init = 0) 

Construct a ReferenceJcArray 
of n elements each of jump size in 
blocks of bs with an optionul ini- 
tializer 

Reference-Nc Array (const 
ReferenceNc ArraytType, 
HiddenData>& ra) 

Copy Constructor. 

refmask () const Return the number of bytes in each 
of the elements 

Index jump () const Return the element jump size in 
bytes 

Index blocksize () const 
Return the number of elements 
that fit within a block 

size-t 

Index num-blocks () const 

DOC++ is 0 1 9 9 5  by Roland Wvnderling 
Make &hkr 

25 

. 



1 What’s in Array.H? 

Return the number of blocks in the 
away 

inline Type& 
operator[] (const Index i) const 

Container’s operator== wants a 
const version 

1.7.2 inline Type& 
operator) (const Index i) 

Return reference to the i’th loca- 
tion resizing af necessary . . . . . . . 

ref (const Index i) Get a reference, as in operator() 
(so this needs to  be protected in the 
same way), but fast like operator[] 
(no resizing) 

Monitor* monitor () Return the threads monitor f o r  
this army. 

inline Type& 
Return the address of one past the 
end of the current size 

28 

Type& 

last () 

inline void 
update (const Index i, const Type& item) 

Set the army’s i’th element to item 

inline void 
insert (const Index i, const Type& item) 

Insert i tem at i’th location 

inliie Index 
size (const Index sz) 

Set the size of array changing CQ- 

pacity of necessay 

Index size () const Return the number of items 

i n l i e  Index 
capacity (const Index new-capacity) 

Set the new capacity 

Index capacity () const Return present capacity. 

inline void 
sort () Sort the array. 

inline void 

Thk pgc has been automatidly grncratd with DOC++ 

DOC++ is @ 1995 by Roland Wwndcrliw 
Make Gcklcr 

26 



1 What's in Array.H? 

reference (void * ref) 
Return the reference guaranteed at 
the top of the block 

reference () const Return Q reference to  the "refer- 
ence" pointer at top of each block 

void* 

inline Index 
index (const Type* t) const 

Find the position in the array 
given the address. 

Pointer to function used to  set 
user- data at top of each block 

void setdatafx (void (*fx) (Index, HiddenData*)) 

inline HiddenData 
hidden-data (void * pt) 

Return a copy of the hidden data 
at top of block 

template <class Rhs-type> inline void 
equal (const Rhs-type& rhs) 

Essentially a templatized opera- 
tor= (NOT ==) used by opera- 
tor= in Container 

ReferenceDcArray <Type, HiddenData> & 
operator= (const ReferenceNcArray<Type, 

HiddenData>& ra) 
Equals operator. For completness 
and to remove compilier warnings 

-.Reference DTc Array () 
Default destructor. Deliberately 
not vartual. 

ReferenceNcArray ( R a )  is an of array of Blocks. Each Block contains a 
header. This header is memory aligned so that a reference can be found by 
taking any location inside the block (the address of an element) and masking 
off a given number of bits using the formula 

elementaddress & refmask 

where "82' is the bitwise AND operator. Each block also stores a running 
index of the number of elements in the array that are stored before this block. 
Each block also stores some user data. This data is set by a user provided 
function and retrived by giving any address in the block to  the hidden-data 

27 



1 What’s in Array.H? 

member function. 

1.7.2 

inline Type& operator) (const Index i )  

Return reference to the i’th location resizing if necessary 

Return reference to the i’th location resizing if necessary. Not thread-safe. Use 
the monitor to  protect yourself by locking it down as we may do set- calls. 

template <class Type> class SortedArray : public Ad- 
justableArray<Type> 

A n  extention to AdjustableArray that maintains the elements in sorted order 
resulting in log,2(n) searches for  a specific element 

Inheritance 

Heap Array 

orted Array 

Public Members 
1.8.1 Type& operator() ( const Index ) . . . . . . . . . . . . . . . . . . . . . . . . 

inline Index 
30 

28 



1 What’s in Array.H? 

size (const Index n) 
Ignore commands to set the size 
to anything larger than the current 
size 

Index size () const Get the size of the array. 

inline void 
update ( const Index, const Type& ) 

Sorted arrays don’t allow direct ac- 
cess to elements 

Index insert (const Index, const Type& item) 
Ignore any index on an insert op- 
eration 

1.8.2 inline Index 
insert (const Type& item, const bool lock=true) . . . 

remove (const Type& item) 

31 

inline void 

Removes the i tem or does nothing 
i f  the item wasn’t found 

inline void 
removejndex (Index) 

Removes the i tem at given index 

1.8.3 inline Index 
findposition (const Type& item, 

bool * found) const 
Finds the position where an item 
i s  or should be in the array . . . . . 

inline bool 
hasitem (const Type& item) const 

Checks to  see i f  item exists in ar- 
ray or not. 

inline Index 
find-position (const Type& item) const 

Finds where an item is  or should 
be in the array. 

inline Index 
find (const Type& item) const 

Finds where an item is in the ar- 
ray. Dies if the item isn’t found. 

template <class Rhs-type> inline void 

31 

Thh p g c  has bcen automatically generated w i d  DOC++ 

DOC++ i s  a 1 9 9 5  by 29 b l i n d  Wvnderling 
Malt. &kler 



1 What's in Array.H? 

equal (const Rhs-type& rhs) 
Essentially a templatized opera- 
tor= (NOT ==) used by  opera- 
tor= in Container 

inline void 
equal (const SortedArray& rhs) 

Essentially a operator= (NOT 
==) for Sorted Arrays used by  op- 
erator= in Container 

inline void 
equal (const ContainertType, SortedArray>& rhs) 

Essentially a operator= (NOT 
==) for Sorted Array Containers 
used by  operator= in Container 

inline Type* 
intersection (SortedArraytType> &a) 

Find the first intersection element 
between this away and a 

inline void 
intersection (SortedArray<Type> &a, 

SortedArraytType> &b) 
Fill array b with the entire inter- 
section of elements between this & 
a. 

inline SortedArray <Type> & 
operator= (const SortedArraytType>& sa) 

Equals operator. For completness 
and to remove compilier warnings 

1.8.4 -SortedArray () Default destructor . . . . . . . . . . . . . . 31 

1.8.1 

Type& operator() ( const Index ) 

Sorted arrays don't allow direct access to elements. 

This p g c  has beem aukomatically generated with DOC++ 
DOC++ i s  01995 Roland Wundedmg 30 

Mdtc Z c k l e r  



1 What's in Array.H? 

1.8.2 

inline Index insert (const Type& item, const bool r lock=true) 

Return Value: s position that item was inserted to  

1.8.3 

inline Index find-position (const Type& item, bool * 
found) const 

Finds the position where an item is  or should be in the away 

Finds the 
the array 

position where an item is or should be in the array. Doesn't lock 
- may be adversely affected if array resizes during execution. 

I "Sorted-Array () 

Default destructor 

Default destructor. Deliberately not virtual. Does nothing, HeapArray's de- 
structor does the work. 

r-- I 

I tem late <class Type, class Array> class Container : I pubEc Array 
I 1 

Container is a decorator class that defines common operations for any 
container 

T h i  page has k e n  automatidly gmcratrd with DOC++ 

DOC++ is @19% by Roland Wun&rling 31 
Make ZZchler 



1 What's in Array.H? 

Inheritance 

Array u 

Public Members 
Container (const Index n = 0) 

Default constructor. Construction 
passed to  the Array class 

const Index jump, Type* init) 
Container (const Index n, const Index blksz, 

Construct array of n elements in 
blocks of given size 

Copy Constructor. 
Container (const ContainercType, Array>& a) 

template <class B> inline bool 
operator < (const B& rhs) const 

< comparison operator for Array 
container classes 

template <class B> inline bool 
operator<= (const B& rhs) const 

<= comparison operator for Array 
container classes 

template <class B> bool 
operator > (const B& rhs) const 

> comparison operator for Array 
container classes 

template <class B> bool 
operator>= (const B& rhs) const 

>= comparison operator for  Array 
container classes 

template <class B> bool 

Thi. page has k e n  autornrticalb ~crna1cd with DOC++ 

DOC++ is @1995 by Roland Wundcdin. 
Mdte Zirklcr 

32 



1 What's in Array.H? 

operator!= (const B& rhs) const 
!= comparison operator for  Array 
container classes 

template tclass Rhs-type> inline boo1 
operator == (const Rhs-type& rhs) const 

<= comparison operator f o r  Array 
container classes 

inline Container <Type, Array> & 
operator= (const Type V a l )  

Assignment from a scalar 

template tclass Rhs-type> inline Container <Type, Array> & 
operator= (const Rhs-type& rhs) 

Container equals container opera- 
tor= 

inline Container <Type, Array> & 
operator= ( const Container<Type, Array>& rhs) 

Our specialazation required so 
some compilers don't ouemide 

inline operator Sstring () 
Allows containers to  be repre- 
sented as Sstrings 

1.9.1 void pack (Send& buf) const 
Support for any type of Container 
to be sent via Comm . . . . . . . . . . . 34 

void un-pack (Recv& buf) 
Support for any type of Container 
t o  be recu via Comm. 

-Container () Destructor. Does nothing, Tem- 
platized arrays do the real destruc- 
tion. 

Container is a decorator class that defines common operations for any container. 
Right now our only types of containers are the array classes. They can be used 
without being adorned by container, but this is not normally recommended as 
they can not then interact with other containers. 

I 1.9.1 I I void pack (Send& buf) const I 
This p g e  ha. been automaticalb scneratcd with DOC++ 

DOC++ is  @ 1995 by 33 bland  Wndcrlin. 
Makc ZSEhlcr 



1 What’s in Array.H? 

Support for a n y  type of Container to be sent via Comm 

Support for any type of Container to  be sent via Comm. This won’t pack in any 
”hidden” information such as references and block sizes, as they may be invalid 
on the other side and almost certainly can be rebuilt there. This provides the ad- 
vantage that a container of one type can be received as a container of a different 
type, i.e. a stack array be received as an adjustable array. 

Thb W ~ C  has been automatically generated with D O C t t  

DOC++ i s  0 1 9 9 5  by Roland Wunderling 
Make & M e r  

34 



2 G id 

(T,H) typedef long Gid 

Integer large enough to provide a unique identifier for a large number of 
objects across a large number of processors 



3 What’s in Comm.H? 

r3 What’s in Comm.H? 

Names 
3.1 class Communicator Communicator class to  define 

m o m  complicated topologies than 
just  MPI-COMM- W O R L D  ..... 36 

3.2 class Comm Comm class .................... 38 

3.3 class Message Base class Message ............ 45 

3.4 class Send : public Message 
Send buffer .................... 49 

3.5 class Recv : public Message 
Receive buffer .................. 59 

In simple terms, C0mm.H contains several classes that collectively act as a 
thread-safe MPI wrapper. By proper use of these classes, a user can send an 
arbitrary object from one processor to  another. How can we communicate an 
arbitrary object when MPI only knows about int, double, char, etc.? We take a 
pass-the-buck approach: any object that wishes to be communicated must have 
member functions that enable the object to  pack itself into a buffer or unpack 
itself out of a buffer. This packing and unpacking is recursive and eventually 
we recurse down t o  an intrinsic variable that MPI actually knowns how to deal 
with. 

3.1 

class Communicator 

Communicator class to define more complicated topologies than just  
MPI-COMhL W O R L D  

Public Members 
Communicator () DefauZt constructor gener- 

ates a Communicator using 
MPI-COMM- W O R L D  

Communicator (int n, int * procs) 

This p g c  has bccn automatically gcneritcd with DOC++ 

DOC++ is  0 1 9 9 5  by Roland Wundding 
Makc Zckler  

36 



3 What’s in Comm.H? 

3.1.1 

Define a new communicator using 
the given last of processors (using 
their global ranks) 

Communicator (const Communicator& comm) 
Copy constructor ............... 37 

3.1.2 Communicator& 
operator= (const Communicator& comm) 

-Communicator () 

Assignment operator ........... 38 

Default destructor frees up the 
Communicator 

3.1.3 int nproc 0 Number of processes in this com- 

3.1.4 int me 0 My unique ID within this commu- 

municator ...................... 38 

nicator ......................... 38 

operator MPI-Comm () 
Transparently transform into a 
MPLComm for  use in MPI calls. 

3.1.1 

Communicator (const Communicator& comm) r 
Copy constructor 

Copy constructor. Creates a duplicate MPI communicator. 

Communicator& operat or = (const 

comm) 

Communicator& 

Assignment operator 

Thk p ~ e  has bccn automatically pneratcd with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wunderli- 
Maltc ZGckltr 

37 



3 What's in Comm.H? 

int m e  () 
* 

Assignment operator. Creates a duplicate MPI  communicator. 

3.1.3 

int nproc () r 
Number of processes in this communicator 

Return Value: Number of processes 

My unique ID within thas communicator 

My unique ID within this communicator. Every MPI process is given a 
unique process ID per communicator, usually from 0 to (processes - 1). 
This ID i s  constant for t h e  l i f e  of t h e  communicator. 

Return Value: Processor I D  

3.2 

class Comm 

Comm class 

38 
This ~ s c  ha, bcrn autornrttolly gcnerrted with DOC++ 

DOC++ E. @I995 by Roland Wundcrling 
Make &kkr 



3 What's in Comm.H? 

Public Members 
3.2.1 Comm (int* p-argc, char** p-argv[]) 

Constructor .................... 
3.2.2 -Comm () Destructor ..................... 

Don't do a darn thing .......... 3.2.3 void nop 0 
3.2.4 static int nproc () Number of processes ............ 
3.2.5 static int me () Ms, unique ID .................. 

3.2.6 static const char* 
name () Every MPI process is given a 

unique name (character string) . 

3.2.7 static int barrier (Communicator& comm=default-comm) 

3.2.8 template <class Valtype> static Valtype 

Synchronize all processes . . . . . . .  

max (Valtype loc-val) 
Find the global maximum for some 
value ........................... 

3.2.9 template <class Valtype> static Valtype 
min (Valtype loc-Val) 

Find the gZobaE minimum for some 
value ........................... 

3.2.10 template <class Valtype> static Valtype 
sum (Valtype loc-Val) 

Find the globaI sum for some value 
................................ 

3.2.11 static Gid globalaffset (Gid mysize, Communicator& 
comm=default-comm) 

Find my global oflset with respect 
to all the processors with a rank 
below mine ..................... 

3.2.12 static Gid" 
global-cutoffs (Gid mysize, Communicator& 

comm=default-comm) 
Get the list of cutofls between all 
the processors .................. 

3.2.13 static double 
time () Everybody always wants timing 4n- 

formation ...................... 

40 

40 

41 

41 

41 

42 

42 

42 

43 

43 

43 

44 

44 

3.2.14 static ofstream& 

This p g e  hm been automaricslb, gcnerncd with DOC+i 

DOC++ is 0 1995 by Roland Wundcrlin. 
Makc 2ickl.r 

39 



3 What’s in Comm.H? 

dfile () Every processor has its own file for 
writing diagnostic information . 45 

Comm class. This class is used to start an MPI process. Each process 
must instantiate one and only one Comm object. Instantiation of this object 
starts MPI. This class also has some miscellaneuous static member functions for 
common communication operations. 

Comm (int* p-argc, char** pargv[]) 

Constructor 

Constructor. This is the only constructor. Instantiation starts MPI. Note 
that MPI needs both argc and argv, and that these may be modified. So if you 
don’t want them modified, make a copy first. 

Parameters: p-argc - Pointer to argc 
p a r g v  - Pointer to argv 

3.2.2 

“Comm () r 
~~~ 

Destructor

Destructor. The destructor stops MPI.

.^ Thk page has brcn automaficalb gencratd with DOC++

DOC++ is a1995 by Roland Wunderling
Makc 2Zckler

. ”.. ,I__. ‘.

4u

3 What's in Comm.H?

static int me ()

3.2.3 r void nop ()

Don't do a darn thing

Don't do a darn thing. Use this to eliminate "never referenced" warnings.

3.2.4 r static int nproc ()

Number of processes

Number of processes. A SPMD paradigm is assumed, where there are N
processes running the same executable. The number of processes is constant for
the life of the program.

Return Value: Number of processes

My unique ID. Every MPI process is given a unique process ID, usually
from 0 to (processes - 1). This ID is constant f o r the life of the
progxam.

Return Value: Processor ID

This past has been autarnatiralb generated with DOC++

DOC++ is 0 1 9 9 5 by 41 Roland Wvndding
Malt= G c k l c r

3 What’s in Comm.H?

1

static const char* name ()

template <class Valtype> static Valtype max (Valtype
loc-Val)

Every MPI process is given a unique name (character string). The name
depends upon the MPI implementation.

Return Value: A constant character string.

3.2.7

static int barrier (Communicator& r comm=defaul t-comm)

Synchronize all processes

Synchronize all processes. When a process invokes barrier, it waits until all
other processes invoke barrier.

Find the global maximum for some value. The value is templated and the
templated type must support the comparison operators. This must be called
exactly once for every process in the array. Alternatively, try the globalmax(T
data, T* reduceddata) function. It’s probably faster, but I’m not sure it works
for non-intrinsic types.

Th- p g e has b c n automatically generated with DOC++

DOC++ is @ 1995 by b l a n d Wvndcrling
Maltc ZGcklcr

42

3 What’s in Comm.H?

~~

template <class Valtype> static Valtype min (Valtype
loc-Val) I

-~

Find the global manimum for some value

Find the global minimum for some value. The value is ternplated and the
templated type must support the comparison operators. This must be called
exxt ly once for every process in the array. Alternatively, try the globalmin(T
data, T* reduceddata) function. It’s probably faster, but I’m not sure it works
for non-intrinsic types.

3.2.10

template <class Valtype> static Valtype sum (Valtype
loc-Val)

Find the global sum for some value

Find the global sum for some value. The value is ternplated and the ternplated
type must support the arithmatic operators. This must be called exactly once
for every process in the array. Alternatively, try the globalsum(T data, T*
reduceddata) function. It’s probably faster, but I’m not sure it works for non-
intrinsic types.

static Gid global_offset (Gid mySize, Communicator&

comm=defaul t-comm)

Find my global offset with respect to all the processors with a rank below mane

Find my global offset with respect to all the processors with a rank below mine.
That is, if PO has a size of 3, P1 has a size of 5 and P2 has a size of 4, PO gets
a global offset of 0 (because there’s nothing before it in rank), P1 gets a global
offset of 3 (size of PO) and P2 gets a global offset of 8 (size of PO + Pl).

~~

Thin p s e has been rutomaficalb gcneracrd with DOC++
DOC++ is Q 19% by Roland Wvndcrling 43

Makc Zckler

3 What's in Comm.H?

3.2.12

static Gid" global-cutoffs (Cid mysize, Communicator& r comm=default-comm)

Get the last of cutoffs between all the processors

Get the l i t of cutoffs between all the processors. That is, if PO has a size of
3, P1 has a size of 5 and P2 has a size of 4, the global division array will be
[2, 7, 111 which means that PO owns 0-2, P1 owns 3-7 and P2 owns 8-11, so
the number stored for each processor is the upper bound of the elements that
it owns. Oh, and delete the array when you're done with it.

static double time ()

Eve ybody always wants timing information

Everybody always wants timing information. There are several different
timing mechanisms, unfortunately none seems to work consistently across all
platforms. Right now this method simply invokes the standard C clock utility
instead of the MPI timing routine. The MPI timing routine seemed to give
wall clock time, which is not very useful when sharing a processor with a dozen
other users. This time.method returns CPU time. The clock resolution and
maximum timing interval are system dependent.

Return Value: The current time, in seconds.

3.2.14

static ofstream& dfile ()

Every processor has its own f l e for writing diagnostic information

44

3 What’s in Comm.H?

Every processor has its own file for writing diagnostic information. The file
is created automatically in Comm’s constructor. This is a little cleaner (and
faster) than having everybody write diagnostic info to cout.

Return Value: An open ofstream object

3.3

class Message

Base class Message

Inheritance

3.4
Send I

Public Members
Message (Communicator& comm=default-comm)

Message (const Message &)

Default Constructor

Copy Constructor

Assignment operator
Message& operator= (const Message &)

virtual -Message () Basic Destructor

3.3.6 int length () const 46

3.3.7 int length (int atleast-this-big)
Adlows the user to manually in-
crease the size of the buffer 47

3.3.8 int amount () const 47

45
This page b s k n automatically generated with DOC++

DOC++ is 0 1 9 9 5 by Roland Wuwkrlimg
Make Z c k h r

3 What's in Comm.H?

Protected Members
3.3.1 Communicator&

communicator

3.3.2 char* buf

int bufden

int buf-place

3.3.3 int myfag

int other

boo1 locked

3.3.4 MPI-Status*
status

3.3.5 MPIRequest*
request

The communicator we 're using for
this message 47

The buffer 48

The current length of the buffer.

The place in the buffer where new
data will go.

The the message tag 48

The other process involved in the
communication.

Indicate that a non-blocking send
or recv is in progress

The status of the message 48

Some MPI calls have a request
data structure, such as non-
blocking send and receive calls . . 48

Base class Message. This is a base class that contains data and methods
common to both Send and Recv. Do not attempt to instantiate a Message
directly, compiler will not let you do this.

3.3.6

int length () const r
Return Value: The current length of the buffer.

Thin psge has been automatically g e m r a i d with DOC++

DOC++ is 01995 by Roland Wunderbng 46
Matte Z6cklcr

3 What’s in Comm.H?

int length (int atleast-thisbig)

Allows the user to manually increase the size of the bufler

Return Value:
Parameters:

The new length of the buffer.
a t l e a s t - t h i s b i g - The buffer size will be >= this
param.

3.3.8

int amount () const r
Return Value: The amount of data (bytes) in the buffer.

Communicator& communicator

The communicator we’re using for this message

The communicator we’re using for this message. If the user doesn’t set one, it
defaults to default-comm (MPI-COMM-WORLD).

47

3 What’s in Comm.H?

3.3.2

char* buf

The bufler

The buffer. All data is converted to bytes and put in the buffer. The buffer
grows automatically as needed.

3.3.3

int my-tag

The the message tag

The the message tag. Usually an integer 0 to M, see MPI documentation for
more details.

3.3.4

MPIStatus* status

The status of the message

The status of the message. Some MPI calls have a status data structure (such
as MPIlprobe), but users should not need to x c e s s this data directly.

Some MPI calls have a request data structure, such as non-blocking send and
receive calls

Some MPI calls have a request data structure, such as non-blocking send and re-
ceive calls. Users should not need to access this data directly.

This page he., been automatically gcncratcd with DOC++

DOC++ ir 0 1 9 9 5 Reland Wundcrling
Makc Z c k l c r

48

3 What's in Comm.H?

3.4

class Send : public Message

Send buffer

Inheritance

Message

Public Members

3.4.2 Send&

3.4.3 Send&

3.4.4 Send&

3.4.5 Send&

3.4.6 Send&

3.4.7 Send&

3.4.8 Send&

3.4.9 Send&

3.4.10 Send&

Send (Communicator& comm = default-comm)

-Send (1 Basic Destructor

operatar() (const int& the-destination,

Basic Constructor

const int& the-tag = DEFAULT-TAG)
Bufler set-up

send () Send the buffer

send (const int& the-tag)
Same as send() except that the-tag
e's used as the tag

readysend () Send the bufler
readysend (const int& the-tag)

Same as ready-send() except that
the-tag is used as the tag
Send the bufler using an MPI syn-
chronuous send

Same as sync-send() except that
the-tag is used as the tag

postsend () Post a send

postsend (const int& the-tag)

syncsend ()

syncsend (const int& the-tag)

51

51

52

52

53

53

53

54

This p g e ha. been autmnakidly generated with DOC++

DOC++ is 0 1 9 9 5 by Roland Wvndcrling
Makc 72ckler

49

3 What’s in Comm.H?

3.4.11 Send&

3.4.12 Send&

3.4.13 Send&

3.4.14 Send&

3.4.15 Send&

3.4.16 Send&

3.4.17 Send&

3.4.18 int

3.4.19 int

Same as post-send() except that
the-tag is used as the tag 54

postreadysend ()
This is a combination of
post-send() and ready-send()

54
postreadysend (const int& the-tag)

Same as post-ready-send() except
that the-tag is used as the tag . . 55

postsyncsend () This is a combination of
postsend() and syncsend()

55
postsyncsend (const int& the-tag)

Same as post-sync-send() except
that the-tag is used as the tag . . 55

completesend () This method completes the send
operation initiated by a post send

Send this buffer to everybody ex-
ecpt me 56

Same as broadcast() except that
the-tag is used as the tag 57

56
broadcast ()

broadcast (const int& the-tag)

dest () const 57

tag () const 57

3.4.20 template <class T> void

3.4.21 template <class T> void

pack (T& object) Templated pack function 57

pack (T* object, int n)
Same as pack(), except we pack n
objects into the buffer 58

3.4.22 template <class T> Send&
operator<< (const T& data)

This operator simply invokes the
pack() method 58

Send buffer. A Send object can be considered a smart buffer in the sense that
this buffer knows how to send itself t o another process. A program may have as
many Send buffers as it wants, but keep in mind that these buffers do take up

Thk p a ~ c has been automatically gcmcratcd with DOC++

DOC++ is @Is% b Roland Wvnderling
Make Gckler

50

3 What's in Comm.H?

memory. It is not necessary to create a new buffer for every message, the Send
buffer can be used over and over again. The idea is that the program packs
several arbitrary objects (not necessarily of the same type) into the Send buffer,
and the tells the buffer to send itself. Kind of like putting several Christmas
gifts into one big box, and then sending the box to a single destination.

This class uses the MPIPack routine to pack data into the buffer, and all
messages are sent using MPIPACKED data type. This is not the fastest way to
do message passing, but it is the most general. This is very useful for dynamic
objects, Le. objects that shrink and grow during the life of the program.

3.4.2

Send& operator () (const int& the-destination, const int& r the-tag = DEFAULT-TAG)

Bufler' set-up

Buffer set-up. This operator sets the other to the-destination, sets my-tag to
the-tag, and sets ok-to-pack to TRUE. The destination is a processor ID in the
range 0 .. (num processes-1). The tag is an integer in the range 0 .. M (M
is implementation specific, but it is usually the maximum unsigned int). The
user must invoke this method this prior to packing data into the buffer. In
order to do a broadcast (send to everybody except myself) the destination may
be BROADCAST. Note that the user does not have to specify the tag here, it
could be specified using the send method.

Return Value:
Parameters:

Reference t o the Send buffer.
the-dest inat ion - The destination process.
the-tag - Tag used to tag the outgoing message.

3.4.3

Send& send ()

Send the buffer

Send the buffer. The buffer is sent to other using my-tag. A MPI basic send

This page has been automatically gmrrafrd with DOC++

DOC++ is 0 1 9 9 5 by Roland Wundcrling 51
Mahe 2ickl.r

3 What's in Comm.H?

is used, this is the best all around send. Upon return the buffer is free for re-
use, but the message might not have been received yet, i,e. it could have been
buffered by the system. Note that some systems have small buffers (kilobytes)
and if the message exceeeds the buffer, this call will block until the destination
does a receive. Look at the test suite for demonstration of how to use the
sendlrecv methods in a deadlock-free manner.

Return Value: Reference to the Send buffer.

3.4.4

Send& send (const int& the-tag)

Same as send() except that the-tag as used as the tag

Return Value: Reference to the Send buffer.

3.4.5

Send& ready-send ()

Send the buffer

Send the buffer. This method uses an MPI ready send. The buffer is free for
reuse upon return. Do not use this method unless you are absolutely, positively
sure that the destination process has already posted a receive. If you are sure
that the receive has been posted, this method can be very fast. It does not
use any system buffers. This method requires a significant amount of process
synchronization and user sophistication, use at your own risk!

Return Value: Reference t o the Send buffer.

3 What’s in Comm.H?

3.4.6

Send& ready-send (const in& the-tag)

Sanae as ready-send() except that the-tag is used as the tag

Return Value: Reference to the Send buffer.

3.4.7

Send& syncsend () r
Send the bufler using a n MPI synchronuous send

Send the buffer using an MPI synchronuous send. This method does not r e
turn until the corresponing receive has started (but not necessarily finished).
Otherwise it is the same as the basic send().

Return Value: Reference to the Send buffer.

3.4.8

Send& syncsend (const in& the-tag)

Same as syncsend() except that the-tag is used as the tag

Return Value: Reference to the Send buffer.

3 What’s in CornmH?

3.4.9

Send& postsend ()

Post a send

Post a send. This method tells the system ”Send this buffer when you get
a chance, and let me do some real work while you are sending the buffer.”
This method returns (almost) immediately, allowing the calling program to do
something else while the message is being sent. However the buffer is locked,
the user cannot reuse the buffer. This is useful for overlapping real work with
communication, which is required in order t o achieve optimal performance. But
it only makes a difference for large messages. At some point the user must
invoke completesend() to verify that the buffer has been send and unlock the
buffer for reuse.

Return Value: Reference to the Send buffer.

3.4.10

Send& postsend (const int& the-tag)

Same as pos t sendo except that the-tag is used as the tag

Return Value: Reference to the Send buffer

3.4.11

Send& postreadysend ()

This as a combination of postsend() and ready-send()

This is a combination of postsend() and readysend(). You can consider yourself
an parallel guru if you sucessfully use this method in a real application.

Thb pg.e has been rutomrticalb gcncrrtrd with DOC++

DOC++ is 0 1 9 9 5 by Roland Wundcrliw 54
Make ZickIer

3 What’s in Comm.H?
~~~~ ~ 

Return Value: Reference to  the Send buffer. 

3.4.12 

Send& postreadysend (const int& the-tag) 

Same as post-ready-send() except that the-tag i s  used as  the tag 

Return Value: Reference to  the Send buffer. 

3.4.13 

Send& postsyncsend () 

This is Q combination of post-send() and sync-send() 

This is a combination of postsend() and syncsend(). This method returns 
(almost) immediately, allowing the calling program to do something else while 
the message is being sent. However the buffer is locked, the user cannot reuse 
the buffer. 

Return Value: Reference to the Send buffer. 

3.4.14 

Send& postsyncsend (const int& the-tag) 

Same as post-syncsend() except that the-tag is used as the tag 

Return Value: Reference to  the Send buffer. 

This rase has been rutomaticdb scnetatd with DOC++ 

DOC++ is 0 1995 by Roland Wunderliw 
Mahe Zochler 

55 



3 What’s in Comm.H? 

3.4.15 

Send& completesend () r 
This method completes the send operation initiated by  a post send 

This method completes the send operation initiated by a post send. Upon 
return the buffer is unlocked and is free for reuse. The message may or may 
not have arrived at the destination, it depends upon which version of post send 
was invoked. 

Return Value: Reference to the Send buffer 

3.4.16 

(nd& broadcast () 

Send this buffer to everybody execpt me  

Send this buffer to everybody execpt me. Note that this method does not 
use an MPI broadcast! This method basically does a send to everybody. The 
destination processes simply does an everyday receive. This is slower than the 
real MPI broadcast but it is more general, we can tag the message, we can 
probe it, etc. In order to  do a brodcast the user must set the destination to  
BROADCAST. Note that this method might not work properly in a hetero 
environment. The typical use of this method is when process 0 reads in some 
data from a file and broadcasts it to  everybody else. In this case speed is less 
important than generality. 

Return Value: Reference to the Send buffer. 

3.4.17 

Send& broadcast (const int& the-tag) r 
~~ 

Same as broadcast() except that the-tag is used as the tag 

Thh page has been automaticalb gcncritcd with DOC++ 
DOC++ is 0 1995 by Roland Wundcrliw 56 

Malt= &tlcr 



3 What’s in Comm.H? 

Return Value: Reference to  the Send buffer. 

3.4.18 

int dest () const 

Return Value: Retruns the dest process ID 

3.4.19 

int tag () const r 
Return Value: Returns the message tag 

3.4.20 

template <class T> void pack (T& object) r 
Ternplated pack function 

Templated pack function. This method packs the object of type T into the 
buffer. Every non-intrinsic object must know to pack itself into the buffer. If 
the object is an instrinsic (char, double, etc.) than it is simply packed into the 

This page has been automaticslly generated with DOC++ 

DOC++ i o  0 1 9 9 5  by Roland Wunderling 
Mahe &Her 

57 



3 What’s in Comm.H? 

buffer using the MPI  pack function. If the object is not an intrinsic, than the 
object must have its own pack method of the form void pack(&Send buf). The 
objects pack method can in turn use this pack method to pack its data. This 
way we can create and modify classes ad infinitum without ever modifying this 
communication class. 

Parameters: object - The object to  be packed into the buffer. 

3.4.21 

template <class T> void pack (T* object, int n) r 
Parameters: 

Same as pack(), except we pack sa objects &to the bufler 

object - Pointer to an array of objects 
n - The number of objects 

3.4.22 

template <class T> Send& operatort< (const T& data) 

This operator simply invokes the pack() method 

This operator simply invokes the pack() method. The idea is to make commu- 
nication look like I/O. See the example program. 

Parameters: p - A referecne to this object 
data - The data object to pack into the buffer 



. 

3 What's in Comm.H? 

3.5 

class Recv : public Message 

Receive bufler 

Inheritance 

r Message 

Public Members 

3.5.1 Recv& 

3.5.2 Recv& 

3.5.3 Recv& 

3.5.4 int 

3.5.5 int 

3.5.6 int 

Recv (Communicator& comm=default-comm) 

-Rem () Basic Destructor 

operator) (const int& thesource = ANYSOURCE, 

This receive operation blocks un- 
til it receives a message from 
thesource with the-tag . . . . . . . . .  60 

Basic Constructor 

const int& the-tag = ANY-TAG) 

postrecv (const int& thesource = ANYSOURCE, 
const int& the-tag = ANY-TAG) 

This is similar to operator() .... 61 

operation posted by post-recv() . . 61 

source () const ................................ 62 

completerecv () This method completes the receive 

tag () const ................................ 62 

size () const ................................ 62 

3.5.7 template <class T> void 
un-pack (T& object) 

Templated unpack function ..... 63 

3.5.8 template <class T> void 

Thk page has been automatically generated wi th  DOC++ 

DOC++ is @ 1995 11 Roland Wundcrhng 
Makc Zicklcr 

59 



3 What's in Comm.H? 

unpack (T" object, int n) 
Similar to un-pack, except this 
method unpacks an array of ob- 
jects ........................... 63 

3.5.9 template <class T> Recv& 
operator>> (T& data) 

This method simply calls 
un-pack() ...................... 64 

void pack (Send& buf) const 
Allow the bufjer to pack itself into 
a Send bufler without ever unpack- 
in g 

Receive buffer. A RRcv object can be considered a smart buffer in the sense that 
this buffer knows how to  receive itself from another process. A program may 
have as many Recv buffers as it wants, but keep in mind that these buffers do 
take up memory. It is not necessary to create a new buffer for every message, 
the Recv buffer can be used over and over again. The idea is that the Recv 
buffer is l i e  a big box full of little presents. You invoke a receive method to 
receive the box, and then you unpack the presents one by one. The presents are 
arbitrary objects, not necessarily of the same type. 

This class uses the MPI-Unpack routine to  unpack data from the buffer, 
and all messages are received using MPIPACKED data type. This is not the 
fastest way to  do message passing, but it is the most general. This is very 
useful for dynamic objects, i.e. objects that shrink and grow during the life of 
the program. 

- Recv& operator) (const int& thesource - 

ANY SOURCE, const int& the-tag 

= ANY-TAG) 

This receive operation blocks until it receives a message from the-source with 
the-tag 

This receive operation blocks until it receives a message from thesource with 
the-tag. After the message arrives you can invoke source() to see who it came 
from, tag() t o  examine the tag, and size() t o  see how big it is. 

This page has been automrticalb gemrated with DOC++ 

DOC++ i s  01995 by Roland Wundcrlir. 
Makc Gcklcr 

60 



3 What’s in Comm.H? 

Return Value: Reference to this object. 

3.5.2 

- Recv& postrecv (const int& thesource - 

ANYSOURCE, const int& the-tag 

= ANY-TAG) 

This is s i m i l ~  to operator() 

This is similar t o  operator(). This method posts a recieve. This method tells the 
system ”Receive this buffer when you get a chance, and let me do some real work 
while you are waiting for the buffer.” This method returns (almost) immediately, 
allowing the calling program to do something else while the message is being 
received. However the buffer is locked, the user cannot attempt to  unpack 
anything from the buffer yet. This method is useful for overlapping real work 
with communication, which is required in order to  achieve optimal performance. 
But it only makes a difference for large messages. At some point the user 
must invoke completesrecv() to  verify that the buffer has been received and set 
ok-to-unpack to  TRUE. 

Return Value: Reference to this object. 

Rem& completerecv () 

This method completes the receive operation posted by post-recv() 

This method completes the receive operation posted by postrecv(). It is block- 
ing, the method will not return return until a message with the correct tag from 
the correct source arrives. This method sets ok-tounpack to  TRUE, user can 
unpack data from the Recv buffer upon return. 

Return Value: Reference to  this object. 

T h i  page ha. been wtornatically gemrated with DOC++ 

DOC++ is  @ 1995 br Roland Wvndcrlinp 
Makc 26ckler 

61 



3 What's in Comm.H? 

int source () const r 

- ~~ 

int size () const 
A 

Return Value: Retruns the source process ID 

3.5.5 

int tag () const 

Return Value: Returns the message tag 

Return Value: Returns the size of the message, in bytes 

62 
Thi. page hns been rutornatically senerrtcd with DOC++ 

DOC++ i s  0 1 9 9 5  4 Rolrnd Wunderling 
Malt.! Z6ckler 



3 What's in Comm.H? 

template <class T> void un-pack (T& object) 

Templated unpack function 

Templated unpack function. This method unpacks the object of type T 
from the buffer. Every non-intrinsic object must know to unpack itself from 
the buffer. If the object is an instrinsic (char, double, etc.) than it is simply 
unpacked from the buffer using the MPI unpack function. If the object is not 
an intrinsic, then the object must have its own unpack method of the form void 
unpack(&Recv buf). The objects unpack method can in turn use this unpack 
method to  unpack its data. This way we can create and modify classes ad 
infinitum without ever modifying this communication class. 

Parameters: object - The object to  unpack 

template <class T> void un-pack (T" object, int n) 1 
Sarnilar to an-pack, except this method unpacks an array of objects 

Parameters: object - A pointer to an array of objects 
n - The number of objects to  unpack 

3.5.9 

template <class T> Recv& operator>> (T& data) 

This method simply calls un-pack() 



3 What’s in Comm.H? 

This method simply calls un-packo. It is used so that communication looks 
just like I/O. See the example program. 

Parameters: p - A reference to this object 
data - The data object to unpack 

This p i c  h s  k n  automatically generated with DOC++ 

DOC++ is 01995 b, Roland Wvndding 
Malie Z c k l c r  

64 



4 cloner 

r4 3 

I template <class Type, class ArgType> void* cloner ( void 
* our-void-arg ) I 

Function to run in thread to handle cloning on all procs 

65 
This page has brrn iutornatirally generated r i l h  DOC++ 

DOC++ i s  @lWS by Roland Wundcrlin. 
Malte Z&tlcr 



5 CommFactory 

Type* clone ( ArgType& arg ) 

I template <class Type, class ArgType> class CommFac- 
tory : public FactoryCType, ArgType> I 
CommFactory is an extention to Factory that ensures that the clone of the 

given object is cloned across all processors such that it exists uniquely on each 
processor 

Inheritance 

Factory - 
E 3  CommFactory 

Public Members 
void initialize 

( const int ctb, Mutex * lock ) ( const int ctb, 
Mutex * ) 

Call this before using this Comm- 
Factory #or cloning 

void finalize () Call this before exiting 

5.1 Type* clone ( ArgType& arg ) 
Get a pointer to the unique in- 
stance of the given type defined by 
the given argument type . . . . . . . . 

Does the actual construction on  
each processor 

67 

void clonelocal ( ArgType& arg, const Index pos ) 



5 CommFactory 

Get a pointer to the unique instance of the given type defined by the given 
argument type. If it doesn’t exist, it will be created on all processors. 

Return Value: 
Parameters: 

s Pointer to  the unique instance 
The - argument that uniquely defines the requested 
instance 

67 



6 cloner 

I template <class Type, class ArgType> void* cloner ( void 
* our-void-arg ) I 

This is  the function used in the thread that ~ommFactory::initial~ze() spins off 

This is the function used in the thread that CommFactory::initialize() spins off. 
On processor 0, it receives requests from arbritary processors in serial fashion, 
returns if it already exists and tells the thread on all other processors to  actually 
build the thing if it doesn’t. 

Thm pale has k n  automatically gemratcd with DOC++ 
DOC++ is @ 1995 b Roland W t m k d i ~  68 

Makc &Lkr 



7 Freelist 

Freelist i s  a small helper class that can be used with Container classes that 
have i tems large enough to  store at least a pointer to another i tem 

Public Members 
7.2 Freelist (Container& ct, bool gc) 

Constructs a Free-list initializing 
it with a reference to container . 71 

Default copy constructor. Should 
not be called. 

Freelist (const Freelist& rhs) 

7.3 void turn-onauto-garbage-collection () 
Start the auto garbage collecter 
and immediately perform any re- 
quired garbage collection before re- 
turning ........................ 72 

inline void 
turn-off auto garbage -collect ion () 

Turn 08 the automatic garbage 
collecter and use the free list mech- 
anism 

inliie void 
turn-onfreedist-usage () 

Turns on free list useage when ob- 
taining next() item(s) 

7.4 inline void 
turn-offfreelist -usage () 

Turns oflfree list useage when ob- 
taining next() item(s) .......... 72 

inline bool 
freedist-used& () Returns a boolean flag of whether 

or not the free-list is being used for 
next() operations 

Equals operator. 
FreeJist& operator= (const FreeJist& rhs) 

bool assert-test () Test that size and alignment meet 
criteria for using a free list 



7 Freelist 

7.5 inline void 
add-tofree (Type* item) 

Add item to fp-ee-list ............ 72 

inline Type* 
next () Returns item on free-list or next 

available i tem space in container 

7.6 size3 next-block (size-t num) 

void reinitialize () 

inline size-t 
freelistsize () 

inline size-t 
numjtems () 

Obtains a block of items with con- 
tiguous indicies from the container 
and returns the index to the first 
item ........................... 72 

Reinitializes the container and 
free list 

Returns the number of items on 
the free-list 

Returns the number of items in 
the container not counting those 
on  the free-list 

Freeliit is a small helper class that can be used with Container classes that 
have items large enough to  store at least a pointer to another item. 

A t  present ,  r e f  (i) , l a s t ( ) ,  block-size() , jump(), s i z e ( ) ,  index(Type*) , 
and relocate(Type*) member funct ions are required by t h e  templated 
container  class. The r e f  (i) r e t u r n s  a reference t o  t h e  i ’ t h  item i n  
t h e  a r r ay .  The l a s t ( )  member funct ion t h a t  r e tu rns  a reference t o  t h e  
next ava i l ab le  i t e m  i n  t h e  container .  The block-size() member function 
r e t u r n s  t h e  number of i t e m s  t h a t  f i t  i n  a given block of memory. The 
jump() member funct ion specifys  t h e  jump byte  s i z e  between successive 
i t e m s  contained with a block. 
t h e  number of i t e m s  cu r ren t ly  i n  t h e  container.  The index(Type*) 
member funct ion r e t u r n s  t h e  index pos i t i on  given an i t e m  address.  
Last ly ,  relocate(Type*) member  funct ion is  ca l l ed  by t h e  Free l ist  
i f  it r e l o c a t e s  an i t e m .  

The s i z e ( )  member function provides 

There i s  a boolean garbage-collection flag t h a t  can be turned on t o  
automatically perform garbage-collection on t he  container.  
on t h e  f r e e  list are immediately garbage col lected.  
I f  t h e  n o t i f i c a t i o n  of a d a t a  item is not important then t h e  
relocate(Type*) member function can be a no op. 
w i l l  move i t e m s  from t h e  end of t h e  array t o  f i l l  any vacancies 

Any i t e m s  

Garbage co l l ec t ion  

This p i e  has been automatically gemrated with DOC+t 

DOC++ is Q 19% by Roland Wundcrlinp 
Makc Zckler  

70 



7 Freelist 

earlier in the list. 

Caveat : 

This is not meant for Containers that can move an item’s location 
as the array size changes. At present this class should be used in 
conjunction with the Reference-Nc-Array. 
process assumes memory is laid out in blocks like the 
Reference-Nc-Array. If memory is contiguous then the array capacity 
could never change size. If a user wants to use a free-list to 
manage a contiguous memory situation then one way to accomplish 
this is to have a huge block-size for the Reference-Nc-Array. 
Also, useage of this Free list assumes the user is only adding 
through last() or the Free-list next() and add-to-freeo member 
functions. 

The garbage collection 

This Free-list class was built as a convenience mechanism to be used 
in association with Reference-Nc-arrays. 
garbage collector. 
only use it partially and sometimes use the Container to change size 
etc ... You have been warned. A general purpose free-list, 
garbage-collection utility is far beyond the perview of this 
class. 

It is not a general purpose 
The user can easily trash the Free-list if they 

Freelist (Container& ct, bool gc) r 7-2 

Constructs a FreeJist initializing it with a reference to container 

Constructs a Freelist initializing it with a reference to  container. 
autogarbsollection boolean is set by the bool gc. 

The 

void turn-onauto-garbage-collection () r 7-3 
Thi. p g e  k r  brcn rulomaticalb gcnemted with DOC++ 

DOC++ is @ 1995 by bland Wundcrling 
Make Z2kl.r 

71 



7 Freelist 

Start the auto garbage collecter and immediately perform any required garbage 
collection before returning 

Start the auto garbage collecter and immediately perform any required garbage 
collection before returning. The usefreelist boolean is also set to  true. 

7.4 

inline void turn-offfreelist -usage () 

Turns offfree list useage when obtaining next() item(s) 

Turns ofE free list useage when obtaining next() item(s). New item space is 
acquired from the end of the Container. Automatic garbage collection flag is 
set t o  false. 

7.5 

inline void add-tofree (Type* item) 

Add item to free-list 

Add item to freelist. If automatic garbage collection boolean is set then garbage 
collection is performed immediately. 

I 7*6 I 
I I size-t next-block (size-t num) 

Obtains a block of items with contiguous indicies from the container and 
returns the index to the first i tem 

Obtains a block of items with contiguous indicies from the container and returns 
the index to  the first item. Garbage collection is done prior to  obtaining the 
block from the container. 

72 



8 What’s in Memorypool.H? 

8 

What’s in Memory-pool.H? 

Names 
8.1 struct Prevnext 

8.2 class Memory stamp 

8.3 struct Sys-block 

Prev-next struct is a Mem- 
ory-stamp number with prev, 
next pointers to create a dovblely 
linked last ...................... 74 

The Memory-stamp class manages 
the writing and reading of the 
memory stamp for  the Memory 
pool ............................ 75 

Sys-block strvct is  for  use as a 
simple linked last inside the Mem- 
ory-pool class .................. 79 

Memory-pool is a power of 2 queue memory allocator that provides memory 
always aligned to  the requested size 8.4 

Our aligned memory manager. The Memory-pool class gets raw aligned 
blocks of memory from the global new operator. This Memory-pool class is 
meant t o  be inherited by other Memory manager classes of higher functionality. 
The Memorystamp class is more of a helper class for memory Pool and could 
be a nested class. 

We’re not interested in reinventing the wheel here. This is not meant to be 
a general all encompassing memory pool allocater. 

This is a special purpose memory manager that always returns memory 
aligned on the size requested. All requests are increased to: nearest power of 2 
>= (size requested + sizeof(size-t)). 

The intended usage of this class is for large memory allocations based on 

Specifically, the Memorypool is not currently designed to handle: 

1) Very small blocks of memory (few words or less) 

2) Memory sizes far from an integer power of 2. For example, 1.5MB size. 

3) Large numbers of small to medium sized allocated memory requests which 

At a minimum each block requires: 

integer powers of 2. 

really don’t require any memory alignment restrictions 

This page h r s  bcrn automatically grmrated with DOC++ 

DOC++ is a 1 9 9 5  by Roland Wundcrling 
Maltr Z h k l e r  

73 



8 What’s in Memorypool.H? 

sizeof(sizeof(size-t) + 2sizeof(void)) 

Actual memory usage overhead: 

while memory is in use: sizeof(size-t): 

while memory is on free list: sizeof(sizeof(size-t) + 2sizeof(void)): 

t o  manage huge system block calls: Small amount if incidental pointers etc ... 

Caveat: 

At present we don’t have the time to  be extremely elegant. To ease code 
writing, we will burden the user of these classes with the following: 

sizeof(size-t) will be added to every request for memory before calculat- 
ing power of 2 size! This means that it will be optimal to ask for say 1024- 
sizeof(size3) bytes rather than 1024 bytes. Requesting 1024 bytes will require 
2048 bytes of memory. 

Concerns: 

Memory management deals with many memory alignment portability issues. 

Comments: 

At a slight performance penalty the prev pointer used when memory is on 
the freelist could be eliminated by rewriting putin-use() and put-onfree() 
member functions to  not prev. This would reduce the required minimum size to  
be 2sizeof(void). So even using 64 bit pointers the minimum real size would be 
16 bytes. This would be comparable to normal system restrictions putin-use() 
would need handle to  loop thru freelist to find prev address. 

Another approach whould be to  use the size-t mask when on freelist but 
this has many software complexity issues such as knowing the ” bestalignment” 
and ”last” bit flags. 

Prev-next s tmct  is a Memory-stamp number with prev, next pointers t o  create 
a doublely linked list 

Members 
size-t num The Memory stamp 

Thb p s e  has been automaticdB generated with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wunderliq 74 
Make Z%klrr 



8 What’s in Memorypool.H? 

Stamp next- Pointer to next memory location 

Stamp prev- Pointer to previous memory loca- 
tion 

Prevpext () Default constructor. 

Prevpext (const Prevnext&) 
Copy Constructor. For com- 
pletness and to remove compilier 
warnings 

Prevnext& 
operator= (const Prevnext&) 

Equals operator. For completness 
and to remove compilier warnings 

Prevaext struct is a Memorystamp number with prev, next pointers to  
create a doublely linked list. This structure represents the memory usage while 
memery is on the free lit .  

8.2 

class Memorystamp 

The Memory-stamp class manages the writing and reading of the memory 
stamp for the Memory pool 

Public Members 
Memorystamp (Stamp v = 0) 

Memorystamp (const Memorystamp& rhs) 

Default Constructor. 

Copy Constructor. For com- 
pletness and to remove compilier 
warnings. 

size-t pasize () Return the power of 2 for this 

boo1 in-use () Return boolean flag of whether 

memory size 

memory is in use 



8 .  What’s in Memory-pool.H? 

bool 

bool 

void 

void 

void 

void 

void 

void 

void 

void 

8.2.2 sizeit 

size-t 

Stamp 

Stamp 

void* 

Stamp 

8.2.3 Stamp 

bestalign () Return boolean flag of whether this 
memo y is  already aligned on best 
possible boundary 

Return boolean flag of whether this 
is  the last memory chunk of a huge 
block 

setin-use () Set the ”in use?” boolean flag 

unsetjn-use () Unset the ”in use?” boolean flag 

set-bestalign () Set the ”best alignment?” boolean 

unset-bestalign () 

last () 

flag 

Unset the ”best alignment ?” 
boolean flag 

setdast () Set the ”last?” boolean flag 

unsetlast () Unset the ”last?” boolean flag 

setsize (size-t n) Set the size in powers of 2 for this 
memory chunk 

Set the stamp to a given number 
setstamp (size-t n) 4 

makenumber (Stamp v) 

stampflum () 

prev (Stamp v) 

next (Stamp v) 

useaddress () 

address () 

next-address () 

Create a number that can be used 
for alignment calculations given a 
Stamp ......................... 78 

Return the Stamp number 

Return the previous memorg loca- 
tion 

Return the next memory location 

Return the address given to user 
for this stamp 

Return address of stamp 

Read Stamp size and return the 
Stamp of memory below us  The 
caller is  responsible for de temin -  
ing whether the returned Stamp is  
valid ........................... 78 

This page him been automaticab generated with DOC++ 

DOC++ is Q 1995 by bland Wunhrling 76 
Makc Zickler 



8 What’s in Memory-pool.H? 

8.2.4 Stamp prevaddress () Read Stamp size and return the 
Stamp of memory above of us The 
caller is responsible for  detennin- 
ing whether the returned Stamp is  
valid ........................... 79 

void set (Stamp v) Bind the stamp to  new location 

inline Stamp 
putjn-use (Stamp v) 

Take this block of memory 00 
the free list This is  only called 
Plrith memory currently on free-list 
next- is set to prev- and given ad- 
dress’s prev-->next ptr is  set to 
given address’s next ptr 

8.2.5 inline void 
put-onfree (Prevnext& freelist) 

Put on the free list ............. 79 

Memory s tamp& 
operator= (const Memorystamp& rhs) 

Equals operator. For completness 
and to remove compilier warnings 

Protected Members 
b static const size-t 

sizemask Enough size bits for 2,255 ...... ?? 

innse- 

8.2.1 static const size-t 

ytes of memory static const size-t 
Bit toggle jlag specifing whether 
memory i s  being used 

Bit toggle flag specifing whether 
memory alignment is best possible 

best align- 

................................ 79 

static const size-t 
last- Bat toggle flag specifing when this 

memory is the last chunk of mem- 
ory an a huge block retrieved by  the 
system 

size-t num The Memory stamp number 

Stamp next- Pointer to  next memory location 

Thin pase has been rutomatiolb generated with DOC++ 

DOC++ is 0 1 9 %  Roland Wvnderling 
Make &hler 

77 



8 What’s in Memorypool.H? 

Stamp prev- Pointer to previous memory loca- 

Stamp ptr Pointer to actual Stamp ed 

tion 

The Memorystamp class manages the writing and reading of the memory 
stamp for the Memory pool. The memory stamp is composed of a size-t* word 
placed in just above the memory address given back to the user and 2 void** 
pointers that point to  prev and next memory when on free list. The Mem- 
orystamp has all knowledge about size, alignment, and position relative to 
other memory etc ... but has no knowledge of actual type or intended usage. 

8.2.2 

size-t makenumber (Stamp v) 

Create a number that can be used for alignment calculations given a Stamp 

Create a number that can be used for alignment calculations given a Stamp. 
The alignment will be based on memory address after the Stamp number since 
we base alignment of user’s handle to  memory and not actual memory alignment 

8.2.3 

Stamp nextaddress () 

Read Stamp size and return the Stamp of memory below us The caller is 
responsible for determining whether the returned Stamp is valid 

Read Stamp size and return the Stamp of memory below us The caller is re- 
sponsible for determining whether the returned Stamp is valid. Memorystamp 
only has knowledge local size jumps. 



8 What’s in MemorypooLH? 

Stamp prevaddress () 

Read Stamp size and return the Stamp of memory above of u s  The caller i s  
responsible for determining whether the returned Stamp is valid 

Read Stamp size and return the Stamp of memory above of us The caller is re- 
sponsible for determining whether the returned Stamp is valid. Memorystamp 
only has knowledge local size jumps. 

8.2.5 

inline void put -onfree (Prevnextk freelist) 

Put on the free list 

Put on the free list. Only ptr and num are setup prev-, next- are not valid by 
design 

8.2.1 

static const size-t bestalign- 

Bit toggle flag specafing whether memo y alignment as best possible 

Bit toggle flag specifing whether memory alignment is best possible. If this bit 
is not set then memory can potentially be combined into a bigger contiguous 
block 

struct Sys-block 

Sys-block struct is  for use as a simple linked list inside the Memory-pool class 

79 
This page has t e n  automatically generated with DOC++ 

DOC++ is 01995 by Roland Wundcrling 
Make Zhkler  



8 What’s in Memorypool.H? 

Members 
Sys-block* next Pointer to next block in linked list 

void* address Actual address to top of huge sys- 

Sys-block () Defazblt Constructor. 

Sysblock (const Sys-block& sb) 

tem retrieved block 

Copy Constructor. For com- 
pletness and to remove compilier 
warnings 

Sys-block& 
operator= (const Sys-block& rhs) 

Equals operator. For completness 
and to remove compilier warnings 

Sys-block struct is for use as a simple linked list inside the Memorypool 
class. The linked list represents all blocks retrieved by the system that are cur- 
rently in use or on free list. This class could be nested class inside Memorypool 
but alas some compiliers are behind the times. 

8.4 

class Memory-pool 

Memory-pool is a power of 2 queue memory allocator that provides memory 
always aligned to the requested size 

Inheritance 

Thk page has k n  automatically gerrrated w f h  DOC++ 
DOC++ is 0 1 9 9 5  by Roland Wundcrling 80 

Mike Zixhler 



8 What's in Memorypool.H? 
~~ 

Public Members 
static Memory-pool* 

clone () Creates a unique instance of the 
Memo ry-pool class using a Single- 
ton pattern 

8.4.7 boo1 legaladdress (void *user_address) 
Check if given address as a legal 
address that user is currently al- 
lowed to release back too use . . . . 82 

inline void* 
memory (size-t siz) 

Provide memory to user of at least 
siz+sizeof(size-t) bytes alignment 
guaranted to be >= the total size 

void release (void *v) Return the memory back to free 
list combining the memory into 
larger chunks if possible to prevent 
memory fragmentation 

virtual "Memorypool () Default destructor gives mem- 
ory back to system regardless of 
whether the memory has been re- 
leased 

void report (ostream& out) 
Report out diagnostics about 
present memory pool usage 

Protected Members 
Memorypool () Default constructor 

Memory-pool is a power of 2 queue memory allocator that provides memory 
always aligned t o  the requested size. Memory-pool retrieves large blocks of 
memory from system and splits this memory into aligned chunks of memory. 
As requests for memory are processed larger chunks of memory are split even 
further and provided t o  the user. As memory is released back t o  the pool it is 
combined back into larger chunks. 

This is a special purpose memory manager that always returns memory 
aligned on the size requested. All requests are increased to: 

Thir p g c  has k e n  automatically genCrdcd with DOC++ 

DOCi+ is @I995 by Roland Wundediog 
Makc &chlrr 

81 



8 What's in Memorypool.H? 

nearest power of 2 >= (size requested + sizeof(size-t)). 

The intended usage of this class is for large memory 
allocations based on integer powers of 2. 

Specifically, the Memory-pool is not currently designed 
to handle : 

1 .  Very small blocks of memory (feu words or less) 
2 .  Memory sizes far from an integer power of 2. 

For example, 1.5MB size. 
3. Large numbers of small to medium sized allocated 

memory requests which really don't require any 
memory alignment restrictions 

~ 

boo1 legaladdress (void "user-address) 
L I 

Check if given address is Q legal address that user is currently allowed to 
release back too use 

Check if given address is a legal address that user is currently allowed to  release 
back too use. The intended usage is a a checking device for memory. Only call 
this function if it is ok to send a message to cerr stating the useraddress is not 
legal. 

This p g e  has been automatically generated with DOC++ 

DOC++ is 0 1 9 %  by Roland Wundcrling 
Malte ZDcklei 

82 



9 Memory manager 

9 

class Memorymanager : public Memory-pool 

Memory management class 

Inheritance 

Memory lnanager 

Public Members 

9.4 

9.5 

9.6 

9.7 

Memorymanager (const Memorymanager& self) 
Calling The copy constmctor as 
explicitly disabled since we are a 
Sangleton class 

Creates a unique instance of the 
Memo y-manager class using a 
Singleton pattern 

static Memorymanager* 
clone () 

static size-t 
delete-clone () Destruct the clone 

updatenewed (const size-t amount) 
inline void 

Update the amount of memory on 
the heap ........................ 84 

inline void 
update-deleted (const size-t amount) 

Update the amount of memo y on 
the heap ........................ 85 

inline void 
update-popped (const size-t amount) 

Update the amount of memory on 
the stack ....................... 85 

inline void 

83 
The p ~ e  has brrn automatid4 generated with DOC++ 

DOC++ i s  01995 by Roland Wunderliq 
Mdtc &kkr 



9 Memory manager 

update-pushed (const sized amount) 
Update the amount of memory on 
the stack ....................... 85 

inline void* 
newaligned (size-t size) 

Obtain memory from Mem- 
ory-pool aligned on a power of 2 
associated m'th the requested size 

inline void 
releasealigned (void *v, const size-t size) 

Released memory obtained by call- 
ing new-aligned member function 

void report (ostream& os) 
Print out the memory usage statis- 
tics to the given output ostream 

9.8 virtual -Memorymanager () 
Default destructor .............. 85 

Memory management class. This is a global singelton class. It keeps track 
of how much memory we have used. It keeps track of both stack memory and 
heap memory. File Mem0rymanger.H 

inline void updatenewed (const size-t amount) 

Update the amount of memory on the heap 

Parameters: amount - The amount of memory just added by new. 

9.5 

inline void update-deleted (const size-t amount) 

Update the amount of memory on the heap 

T h i  p g c  h a  b n  automricrlC generated with DOC++ 

DOC++ is @LOPS by Roland Wvnderling 
Make &klrr 

84 



9 Memory manager 

Parameters: amount - The amount of memory just deleted by delete 

9.6 

inline void update-popped (const size-t amount) 

Update the amount of memory on the stack 

Update the amount of memory on the stack. The class or method that allocates 
stack memory needs to  call this. 

Parameters: amount - The amount of memory just added. 

inline void update-pushed (const size-t amount) 

Update the amount of memory on the stack 

Update the amount of memory on the stack. The class or method that allocates 
stack memory needs to  call this. 

Parameters: amount - The amount of memory just deleted. 

virtual "Memory-manager () 

Default destructor 

Default destructor. Only deletes the Memorymanager for the last reference. 

This p g e  has k n  automaticalk ienerrtrd with DOC++ 

DOC++ is 0 1 0 %  by Roland Wundcrling 
Makc Z c k l c r  

85 



10 Monitor 

I lo I 

I class Monitor : public Mutex I 
This allows us to track useage of a critical section and guamntee exclusive 

access when needed 

Inheritance 

Public Members 
inline Monitor () 

inline -Monitor () 

inline void 
lock () 

inline Monitor& 
operator++ () 

Default constructor: initializes the 
Monitor 

Default destructor: destroys the 
Monitor 

Request exclusive access to this 
Monitor 

Request non-exclusive access to 
this Monitor 

inline Monitor& 
operator++ (int) Request non-exclusive access to 

this Monitor 

inline Monitor& 
operator- () Inditate that we are finished with 

non-exclusive access to this Moni- 
tor 

inline Monitor& 
operator- (int) Inditate that we are finished with 

non-exclusive access to this Moni- 
tor 

This page b r  b-n automatically generated with DOC++ 

DOC++ is @ 1995 by bland Wunderling 
Make Lscklcr 

~ 

86 



10 Monitor 

This allows us to  track useage of a critical section and guarentee exclusive 
access when needed. This is called a semaphore in some circles, but (unfortu- 
nately), POSIX semantics consider a semaphore to  be something quite different. 
This is particularly useful if you have many threads reading some data, but you 
want to  guarentee that you're the only thread writing the data. This is accom- 
plished as follows: 

Reading Thread I Writing Thread 

monitor++; I monitor. lock0 ; 
data.read() ; 
monitor-; I monitor.unlock0; 

I data.write0; 

see, there can be numerous threads reading at  once, but as soon as a writing 
thread comes along, no other readers can enter the critical section until the 
writer is done. Likewise, the writer can't start until all the readers have left. 

Thi ps has b e "  aubmaticalb gmcratcd with DOC++ 

DOC++ is 0 19% by Roland W u m k r l i ~  
Malie  &kler 

87 



11 Static 

11 

#define Static 

If we have threads then the word ”Static” will be ’’ ” else it will be ”static” 

If we have threads then the word ”Static” will be ” ” else it will be ”static”. 
This will allow us t o  turn on and off the use of temporaries based on threads 

88 
This p ~ c  has been automatically acnerated wilh DOC++ 

DOC++ is @ 1995 by Rol-nd Wvnderliog 
Makc Z c k l c r  



12 Mutex 

12 

class Mutex . 

Inheritance 

E T  Mutex 

Public Members 
12.1 Mutex () It is assumed we are running the 

POSIX-THREADS . . . . . . . . . . . . . 89 

Mutex (const Mutex&) 
Copy constructor 

A is assumed we are running the POSIXTHREADS 

It is assumed we are running the POSIX-THREADS. For the DCE threads 
change the NULL to be pthreadmutexattr-default. 

This p g c  has k=cn automatically gcmratcd with DOC++ 

DOC++ is 0 1 9 9 5  by b land  Wvndcrling 
Make ZiKhlcr 

89 



13 What’s in Oct-tree.H? 

What’s in Oct-tree.H? r l3 
Names 
13.1 template <class Type> union 

Oct-data Octdata a union of various 
pointer types . . . . . . . . . . . . . . . . . . . 90 

The Oct-tree class partitions 3-D space into quantized bins to enable quick 
searches that have the traditional time vs memory trade-off 13.2 

13.1 

template <class Type> union Oct-data 

Oct-data a union of various pointer types 

Members 
Oct-data <Type> * 

o ct p t r  

A B  (Type) 

Pointer to Oct-data< Type> 

Pointer to array containing point- 
ers to items which all have identi- 
cal quantized positions 

Oct-data <Type> * 
oct [8] Array of 8 pointers to  

Oct-data< Type>s 

inline Oct-data <Type> * 
item (const int i) Returns a pointer to the i’th i tem 

relative to the this pointer (not the 
usual ‘this) 

template <class R_aarray> inline void* 
ref (Raa r ray& ra) 

Returns the reference value for 
this Block within the R-a 

Oct-data a union of various pointer types. The is a helper union to  encapsu- 
late some of the most common uses of the Oct-tree ReferenceJcarrays. 

The page tur been atstomatically geneiitcd with DOC++ 
DOC++ is 0 1 9 9 5  by b l a n d  Wunddiwg 90 

Malt= Zkkkler 



13 What’s in Oct-tree.H? 

I 132 I 
template <class Ty e, class PosType, class ObjType, class 
TagType> class B ct-tree I 
The Oct-tree class partitions 3-D space into quantized bins to enable quick 

searches that have the traditional time us memory trade-o# 

Public Members 
13.2.6 Oct-tree () Default constructor ............. 93 

Oct-tree (Oct-tree& oct) 
Default copy constructor 

13.2.7 void initialize (ObjType* obj-, Vector<PosType>& lo-, 
VectortPosType>& hi-, 
const PosType small, const PosType tol-, 
IntType hash-bits-, boo1 tagging-) 

Initialize the Oct-tree .......... 93 

void filled s e c  t ors ( A a (  size-t ) & sectors) 
Fills in Given array with a list of 
all hash table sectors that have at 
least one item an it 

size-t numsectors () Returns the number of hash table 

inline const Vector <PosType> & 
position (Type *data) 

sectors in the Oct-tree 

Return a reference to position uec- 
tor calling user’s pos-ref function 

inline TagType 
tag (Type *data) Return the tag by  calling user’s 

tag() function 

const TagType* tag-) 
13.2.8 Type* findllear (const Vector<IntType>& p, 

Find a nearby item in the Oct-tree 
................................ 94 

13.2.9 void remove (Type* useritem) 

Thm pge has bcm automatically gmcratcd with DOC++ 

DOC++ is 0 1995 by Roland Wundcrling 
Makc Z&klcr 

91 



13 What's in Oct-tree.H? 

Remove a given i tem from the 
Oct-tree ........................ 94 

13.2.10 inline void 
insert (Type** at, Type* data) 

Insert data i tem at supplied ad- 
dress ........................... 95 

13.2.11 inline Type* 
find (const VectortPosType>& pos, 

const TagType* tag-, Type**& dummy) 
Find data item ut given position 
and return an address if not found 
................................ 95 

inline Type* 
query (const VectortPosType>& pos, 

13.2.12 Type* 

void 

void 

virtual 

const TagType* tag-) 
Query to see i f  i tem exists in 
Oct-tree but do not modify the 
Oct-tree if i tem is  not found 

find (const Vector<PosType>& pos, 
const TagType" tag-, boo1 query, 
Type**& dummy) 

Find data i tem at given position 
and return an address if not found 
................................ 95 

report (ostream& out) 

fullreport (ostream &out) 

IOct-tree () Default destructor. 

Report Oct-tree diugnostics out 

Full report Oct-tree diagnostics 

The Oct-tree class partitions 3-D space into quantized bins to enable quick 
searches that have the traditional time vs memory trade-off. Given a position 
in 3-D space this class finds if something is in same bin. If tagging is enabled 
then a position and tag define uniqueness. 

The Oct tree algorithm converts a floating point representation into an in- 
teger where each bit represents a level of an 8**n tree. 8**n comes about by 
dividing x,y,z space each into 2**n 1-D partitions. By MASKing the bits one 
can quickly determine the one of 8 slots to go down at a given level. A hash 
table is used to bypass the first hash-bits of levels. Items with identical 
positions but unique tags are legal. 



13 What's in Od-tree.H? 

13.2.6 

Oct-tree () 

Defauit constructor 

Default constructor. The user must call initialize before actually using the 
Oct-tree. 

13.2.7 

void initialize (ObjType' obj-, Vector<PosType>& lo-, 

Vector< PosType>& hi -, const PosType 
small, const PosType tol-, IntType 
hashbi t s ,  boo1 tagging-) 

Initialize the Oct-tree 

Initialize the Oct-tree. 

The following va r i ab le s  supplied by t h e  use r  determine t h e  
behavior and memory overhead f o r  t h e  Oct-tree. 

1. ObjType pointer :  Object used t o  ex t r ac t  pos i t i on  
and tagging information 

2. Vector<PosType> lo-:  Lowest s p a t i a l  extreme t h e  mesh 
w i l l  ever be 

4.  Vector<PosType> hi-: Highest s p a t i a l  extreme t h e  mesh 
w i l l  ever be 

5 .  PosType small: Smallest s p a t i a l  s i z e  t h a t  t h e  
Oct-tree should be ab le  resolve 

6. PosType t o l - :  S p a t i a l  tolerance of t h e  pos i t i on  data .  
Float ing point  representat ions of numbers within t h i s  
range are considered t o  be i d e n t i c a l .  
parameter is i n  terms of small. For example: 0 .01 means 
t h e  t o l -  is 1 percent of t h e  small parameter. 

The t o l -  

Numbers 

This page has been automatically generated with DOC++ 

DOC++ is 0 1 9 %  by bland Wvndcrling 
Makc Zbckler 

93 



13 What's in Oct-tree.H? 

void remove (Type" useritem) 

g rea t e r  than 0 .1  a re  mappped t o  0 . 1  t o  help prevent 
ambiguity when to le rances  a re  l a rge  

7. IntType hash-bits-:  Number of hashed layers the  Oct-tree 
is t o  use.  
memory. The memory usage f o r  t he  hash t ab le  is 
8**{hash_bits_+l) * sizeof (pointer)  , 

A higher number is f a s t e r  but uses  more 

8. boo1 tagging-: boolean f l a g  t o  determine i f  tagging 
w i l l  be used as a d is t igu ish ing  f ea tu re  f o r  
uniqueness 

Type* findnear (const Vector<IntType>& p, const Tag- 

Type* tag-) 

Find a nearby item in the Oct-tree 

Find a nearby item in the Oct-tree. This is not guaranteed to be the closest 
item. In general however, this member function will return an item within a 
Line Of Sight (LOS) of the position. A nearest neighbor may not be found if 
the number of hash bits is not set to 0. The user is issued a WARNING in this 
regard. 

Remove a given item from the Oct-tree. The item must have been inserted in 
the Oct-tree or error will result. 

T h i  page has k e n  automatically ~enerated with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wvndcrling 
Make Zchler  

94 



13 What's in Oct-tree.H? 

13.2.10 

inline void insert (Type** at, Type* data) r 
Insert data i tem at supplied address 

Insert data item at supplied address. This address must be obtained by using 
the find member functions. Range checks on done on this address to  help prevent 
bugs but the tests are not full proof. The user must insert immediately after a 
find. If the Oct-tree is modified between a find and insert then the operation 
becomes ill-defined. Note that even a call to find can modify the Oct-tree. 

inline Type* find (const Vector<PosType>& pos, const 

TagType" tag-, Type**& dummy) 
~~~ ~ 

Find data i tem at giuen position and return an address i f not found

Find data item at given position and return an address if not found. The user
must insert the item at the given address before the Oct-tree is modified or
errors can result. Note that calling this routine modifies the Oct-tree if the
position is not found.

13.2.12

Type* find (const Vector<PosType>& pos, const TagType"

tag-, boo1 query, Type**& dummy) r
Find data i tem at given position and return an address i f not found

Find data item at given position and return an address if not found. The user
must insert the item at the given address before the Oct-tree is modified or
errors can result. Note that calling this routine modifies the Oct-tree if the
position is not found and query is not set to true.

Thi. wge ha, bccn automatically generated with DOC++
DOC++ is 0 1995 by Roland Wvnderlig 95

Maltc 25ckl.r

14 What’s in Rb-tree.H

I l4 1
What’s in Rb-tree.H

Names
14.1 template <class Key, class Data> class

Rb-data Rb-data class holds the data for a
given entry in a Rb-tree 96

The Rb-tree red black tree class is meant t o hold large (many hundreds to
billions) of data items 14.2
A variation of the Red Black tree.

~

template <class Key, class Data> class Rb-data

Rb-data class holds the data for a gzven entry an a Rb-tree

Public Members
inline Rb-data () Default constructor.

inline Rb data (RbdatacKey, Data> * lef, Rbdata<Key,
Data>* righ, Rb-datatKey, Data>* par,
Key& ky, Data& dat, Color col)

Constructs a Rb-tree given left,
right, parent, key, data, and
color

inline Rb-data <Key, Data> *&
right ()

inline Rbda ta <Key, Data> *&

Returns a reference to the right
Rb-data pointer

left 0 ,Returns a reference to the left
Rb-data pointer

Returns a reference to the parent
Rb-data pointer

inline Rb-data <Key, Data> *&
parent ()

inline Color&

~~

T h i page ha- been automatidly generated with DOC++
DOC++ i. @I995 b, bland Wundcrling 96

Malte Z k h l c r

14 What’s in Rb-tree.H

color ()

inline Key&
key 0

inline Key key-copy ()

inline Data&
data ()

inline Data
data-copy ()

inline Color
red 0

inline Color
black ()

14.1.1 inline void

Returns a reference to the color for
this Rb-data

Returns reference to key for this
Rb-data

Returns a copy of the key

Returns reference to data for this
Rb-data

Returns a copy ogf the data for this
Rb-data

Returns the enum value of red

Returns the enum value of black

relocate (RbdatatKey, Data>*)
Free-list requires a relocate func-
tion 98

Protected Members
enum Color

Rb-data <Key, Data> *
left-

Rb-data <Key, Data> *
right -

Rb-data <Key, Data> *
parent-

Key key-

Data data-

Color color-

Enumeration that determines the
color for this Rb-data

Points to 0 Rb-data item less than
the current data

Points to a Rb-data i tem less than
the current data

Points to the parent in this red
black binary tree

The key belonging to this Rb-data

The data belonging to this Rb-data

The color of this Rb-data

97

14 What’s in Rb3ree.H

Rbda ta class holds the data for a given entry in a Rb-tree. The class could
be a nested class of Rb-tree but some compiliers don’t like nested classes yet.
R b d a t a holds a left, right, and parent pointer, a key and a data item

14.1.1

inline void relocate (Rb-data<Key, Data>*) r
FreeJist requires a relocate function

Freelist requires a relocate function. This function is empty.

14.2

template <class Key, class Data> class Rb-tree

The Rb-tree red black tree class is meant to hold large (many hundreds to
billions) of data items

Public Members
Rb-tree () Default constructor

Rb-tree (Index capacity-)
Constructor with capacity of size

inline void
insert (const Key& key, const Data& dat)

Inserts a data item into the red
black tree overriding data i f it al-
ready exists in the tree

14.2:2 inline Data*
insert (const Key& key)

Returns the address where data
should be entered for this key . . . 100

inline Data*
find (const Key& key)

Returns pointer to data if i tem i s
in red black tree else 0

inline void

Thk p.1gc has been automatically gcainted with DOC+t

DOC++ IS 0 1 9 % by Roland Wvndcrling
Makc Zrickler

98

14 What's in Rb-tree.H

remove (const Key& key)
Removes data item associated with
provided key

Returns the number of items in
this tree

inline Index
size ()

void reinitialize () Reinitializes the red-black tree

inline void
un-ordered (Index idx, Key& key, Data& dat)

Returns the i'th non-ordered key
and data item in the tree

inline void
un-ordered-key (Index idx, Key& key)

Returns the i'th non-ordered data
item in the tree

inline void
un-ordered-data (Index idx, Data& dat)

Returns the i'th non-ordered data
item an the tree

The Rb-tree red black tree class is meant to hold large (many hundreds to
billions) of data items. For smaller data sets use the Registry or Sorted array
classes. There are significant memory and cpu overheads associated with using
the Rb-tree.

While there are significant memory and cpu overheads, the insertion deletion,
and find algorithms all assumptotically approach constant time for huge data
sets.

The rotation, insertion and deletion member fuctions were adapted from c
version of red black tree:

I' By Thomas Niemann and is available on <A NAME="texZhtml8"
HREF="http://~u.geocities.com/SoHo/2167/bo0k.html~~>
his algorithm collection webpages.
This code is not subject to copyright restrictions.

11

They have been modified to use Reference arrays. The functions have also been
extended to work with data in a Registry fashion rather than just raw data.

Note that this implementation of the Rb-tree does not own the data but

~~

Thn page has been autornaticalC gmcratcd with DOC++

DOC++ is 0 1 9 9 5 by %land Wvndcrling
Mike ZGcklcr

14 What’s in Rb-tree.H

holds pointer to the data. It does own the keys.

inline Data* insert (const Key& key)

Returns the address where data should be entered for this key

Returns the address where data should be entered for this key. It is
the callers responsibility to set the data up after being given this address.

Thb page has been automatidly generated with DOC++
DOC++ is 0 1 9 9 s by Roland Wvnderling 100

Malte &kler

15 Reference

I l5 I
template <class Type> class Reference

This creates a reference (€4) to T data that is usually newed

Public Members
const Type*

data () const The const member functions are
required by Array classes

const Type&
data (const Index i) const

The const member functions are
required by Array classes

This creates a reference (&) t o T data that is usually newed. We must keep
track of when the data moves and update the relocateref0 member function.
The sneekyness going on here is that we really have a pointer to an array of data
but use data like it is a reference to a single data item. This amounts to one less
dereferencing of a pointer and works for contiguous memory arrays. At present,
there is a significant speed up over conventional pointer to array dereferencing.
We might not need this class as compiliers mature. Use this class by inheriting
this class and calling relocateref when data moves.

Thh pase ha. been automatically generated with DOC++

DOC++ is @ 1995 by Roland Wundtrling
Meke &kler

101

16 What’s in Registry.H?

What’s in Registry.H? r l6
Names
16.1 template <class Key, class Data> class

Key-data The Key-datatKey, Data> class
concatenates Key and Data into 0

single structure where the compar-
ison operators are based soley on
the Key

The Registry class allows insertion
and removal of data based on a key
that is stored with the data

16.2 template <class Key, class Data> class
Registry

102

104

Implements the Key Data and Registry templatized classes.

16.1

template <class Key, class Data> class Key-data

The KeyAata<Key,Data> class concatenates Key and Data into a single
structure where the comparison operators are based soley on the Key

Public Members
Key-data () Default constuctor

Key-data (const Key& k-, const Data& d)
Construct a Key-data given key
and data

Key-data (const Key& k-)
Constructor based on key alone.
(Data is asgnored)

Copy constructor
Key-data (const Key-datatKey, Data>& kd)

inline boo1

16 What’s in Registry.H?

operator == (const KeydatatKey,
Data>& rhs) const

_- _- comparison operator based
solely o n key

inline bool
operator != (const Key-datatKey,

Data>& rhs) const
!= comparison operator based
solely on key

inline bool
operator > (const Key-datatKey,

Data>& rhs) const
> comparison operator based solely
on key

inline bool
operator >= (const Key-data<Key,

Data>& rhs) const
> = comparison operator based
solely on key

inline bool
operator < (const Key-data<Key,

Data>& rhs) const
< comparison operator based solely
o n key

inline boo1
operator <= (const Key-data<Key,

Data>& rhs) const
< = comparison operator based
solely o n key

inline Keydata&
operator= (const Keydata& kd)

= equals operator

Return a reference to the data

Return a reference to the data

Return a reference to the key

Return a reference to the key

inline const Data&
dat () const

dat 0

key () const

key 0

inline Data&

inline const Key&

inline Key&

Thk page has heen automatically generated with DOC++

DOC++ i s @ 1995 by Roland Wunderling 103
Malte &klcr,

16 What’s in Registry.H?

Protected Members
Key k The key that unlocks the data

Data data- The data stored for a given key

16.2

template <class Key, class Data> class Registry

The Registry class allows insertion and removal of data based on a key that i s
stored with the data

Public Members
Default constructor

Registry (const Index size = 0)
Construct a regzsty of given size

Registry (const RegistrytKey, Data>& reg)
Copg constructor

inline Index
insert (const Key& k, const Data d)

Insert a key and its associated
data item

inliie void
remove (const Key& k)

Remove the key and its associated
data item

inline Data
regdata (const Key& k)

Return a copy of the data assoca-
ated with the key

inline const Data&
ref-data (const Key& k)

Return a reference of the data as-
sociated with the key

16.2.2 inline Data
find-data (const Key& k)

Returns a copy of the data gaven a
key_.. 106

inline Data&

This p ~ e has bcen automatically scncratcd with DOC++

DOC++ is 0 1 9 9 5 b, bland Wvndrrling
Malt. 7s&l.,

104

16 What’s in Registry.H?

insertdataref (const Key& k)
This is not thread safe - be sure to
lock down array before use

inline Data
operatorn (const Index i) const

Get the i’th data value in the array

inline Data
operatorn (const Index i)

Get the i’th data value in the array

16.2.3 inline Data&

inline

inline

16.2.4 inline

16.2.5 inline

inline

inline

inline

void

operator() (const Index i)
Get a reference to the i’th data
value in the away 106

Return a copy of the i’th key
Key key (const Index i) const

Key&
keyref (const Index i) const

Return a reference to the i’th key

Index
findposition (const Key& k) const

Find the given key’s position in the
registy 106

Index
findposition (const Key& k, bool* exists)

Find the given key’s position in the
registy 107

Returns the number of items in the
registry

capacity (const Index cap)

Index
size () const

void

Sets the Registry’s current capac-
i t y of the registry

Returns the Away’s monitor that
contains keys and data

Report out diagnostics about this
registy

Monitor*
monitor ()

report ()

16 What’s in Registry.H?

-Registry () Default destructor

The Registry class allows insertion and removal of data based on a key that
is stored with the data. Redundant keys are NOT reinserted!

16.2.2

inline Data find-data (const Key& k)

Returns 0 copy of the data given a key

Returns a copy of the data given a key. Returns 0 of the key is not valid. Call-
ing this function makes sense only when data = 0 is meaningful.

16.2.3

inline Data& operator() (const Index i) r
~~~ 

Get a reference to the i’th data value in the array 

Get a reference to  the i’th data value in the array. Not thread safe. Lock down 
the array before use. 

16.2.4 

inline Index find-position (const Key& k) const r 
Find the given key’s position in  the registry 

Find the given key’s position in the registry. This index is only guaranteed to  
correspond t o  given key until next insert or remove is called 

T h k  page has been automatically generitd with DOC+i 

DOC++ IS @1W5 by bland Wvnderling 
Make ZhhIer 

106 



16 What's in Registry.H? 

I 16.2.5 I I inline Index find-position (const Key& k, bool" exists) 

Find the given key's position in the registry 

Find the given key's position in the registry. Sets boolean flag to true if it exists 
else false. This index is only guaranteed to correspond to given key until next 
insert or remove is called 

This page has been autornrtical)y generated with DOC++ 

DOC++ is a l p 9 5  b, Roland Wundcrlin. 
Make &klcr 

107 



17 RetrieverTask 

I l7 1 I enum RetrieverTask 

Retriever task enumeration defininy types of tasks currently supported by  the 
Retriever class 

108 
T h i  page har k e n  automrticdly gcrrrated with DOC++ 

DOC++ is  @ 1995 bj b l a n d  Wvndcrling 
Malic Z c k l e r  



18 Retriever 

I template <class Type, class SendData, class RtnData> class I Retriever 

The folloun'ng class is a quick attempt at a Retriever class 

Public Members 
FuncPtr func-ptr (int task-type) 

Returns the function pointer asso- 
ciated with given task type 

18.5 Retriever (int task, Type *controller-, 
Communicator& communicator-, 
int comm-tag-, PmemF'unc pmf-) 

The Constructor sets up a Thread 
to perform a ThreedTask . . . . . . . 111 

18.6 static void* 
singledatasync (void *untyped-ptr) 

This member function is called 
when the Thread receives a request 
................................ 111 

inline void 
n0-p 0 Does nothing but calm the ansa 

compiliers from warning about 
lack of usage of Retriever objects 

-Retriever () Default destructor 

The following class is a quick attempt at a Retriever class. 

A general "user provided" member function is possible but not implemented. 
Instead a user must overload the retrieve function for a given class. 

The intend is to  overload the Constructor with different args to  create 
threads that perform different types of Threading tasks. For example, a very 
general mechanism can be achieved by overloading retrieve function that accepts 
a Send and returning a Recv buffer. In other words, This class "encapsulates" 
the use of the Thread object. 

A Retriever is something that manages a Thread. It constructs a Thread 
for a special purpose and destroys the Thread after completion. For certain 
Retriever tasks, an implicit barrier is setup in the destructor so that all procs 
in communicator must call the Retriever object's destructor before any of the 

This p e e  ha. been automatiolfy Eenerated with DOC+i 

DOC++ is Q 1995 Roland Wundcrliw 
MaNc Zkklcr 

109 



18 Retriever 

other processor’s destructors return to  join with the thread of execution which 
spawned the request. 

This class is very heavy weight and should be used when dozens or hundreds 
of messages are to  be passed. This class is not meant for millions of requests. 
N o  buffering is done and the destructor could be expensive. 

hstrictions: 

1) Any member function of a class can be used but the member function 
must have exactly 2 arguments and be able to  deal with requests from a foreign 
proccessor. The two arguments are sent data type and returned data type. 

COMMENT BELOW is only relavant t o  SINGLEDAT-SYNC 

2) Although this allows any number of sends and receives without any user 
burden. There is an implicit barrier (destructor won’t return until all destructors 
are called) which is Usually but not always what the user wants. 

So a typical usage might be: 

{ Retr iever  retriever(RetrieverTask, 
comunica t ior  , 
con t ro l l e r ,  
COMM-TAG , 
member-function called when r e t r i ev ing ) ;  

controller->member-f unct ion ( r e t r i eve r  , data)  ; 

any user  source code. . .  

controller->member-function(retriever, da ta ) ;  

any user  source code . . .  

<---- 
I 
I ‘ The c los ing  braces  imp l i c i t l y  c a l l s  des t ruc to r  

and a l l  cleanup is  done automatically. 

User burden l imi t ed  t o  constructor  arguments. No Threading code 

Thk pse has been autornrtically generated with DOC++ 

DOC++ I* @ 19% by Roland Wundding 
Makc Z r k l c r  

~ 

110 



18 Retriever 

requi red .  

18.5 

Retriever (int task, Type *controller, Communicator& 

communicator, int comm-tag-, Pmemhnc r pmf-1 

The Constructor sets up a Thread to perform a ThreadTask 

The Constructor sets up a Thread to  perform a ThreadTask. A RetrieverTask is 
a simple enumeration that corresponds to a static member function of this class 
which is the executable the Thread will actually run. The member function 
handles the management of the Thread. The actual data exchange is handled 
by the object passed to  this constructor. The Communicator and comm-tag are 
used by the executable run by the Thread. 

18.6 

static void* single-datasync (void "untyped-ptr) 

This member fisnctaon is called when the Thread receaves a request 

This member function is called when the Thread receives a request. Only a 
single data item is sent and received. 

Thi. p g c  has been automat*calb sencrated with DOC+i 

DOC++ i. 0 1 9 9 5  Roland Wvndcrling 
Make ZGckler 

111 



19 RunTime 

19 

class RunTime 

Times a program (or anything else you desire) 

Times a program (or anything else you desire). Roughly accurate to the mi- 
crosecond (depending on the underlying implimentation). 

112 



20 What’s in SparsematrkH? 

What’s in Sparse-mat r ix. H? r 2o 

Names 
20.1 template <class Column, class Data> class 

Sparsematrixrow : public 
ContainertKeydatat Column, 
Data), 
Sorted Arrayt  Keydatat  Column, 
Data> > > 

The Sparse-matrix-row is a deco- 
rated SortedArray container that 
provides a few additional services 

113 
20.2 template <class Row, class Column, class Data> class 

Sparsematrix The Sparse-matrix is a simple 
convenience class for holding en- 
tries in a sparse matrix . . . ... . . 114 

Declares and implements a simple Sparsematrix class. 

template <class Column, class Data> class 
Sparsematrixrow : public ContainercKey-data<Column, 
Data>, SortedArray<Key-data<Column, Data> > > 

The Sparse-matrix-row is a decorated SortedArray container that provides a 
few additional services 

Inheritance 

m Array 

This page has k n  automatically generated with DOC++ 

DOC++ is 0 1 9 9 s  by Roland Wundtrling 
Mahc ZKtlrr  

113 



20 What’s in SparsematrkH? 

Publ ic  Members 
S p a r s e m a t r i x r o w  (> 

S p a r s e m a t r i x r o w  (const Row-Type& row) 

Default constructor 

Copy constructor. 

inline Data& 
operator) (const Column& col) 

Returns a reference to  the Data 
given a Column key 

The Sparsematrixrow is a decorated SortedArray container that provides 
a few additional services. This class is an interface class to  rows of the 
Sparsematrix class; 

20.2 

template <class Row, class Column, class Data> 
Sparse matrix 

class 

The Sparse-matrix is a simple convenience class for holding entries in Q sparse 
matrix 

Public Members 
typedef Sparsematrixrow <Column, Data> 

Row-Type Provides a convenient typedef for 
users to obtain Q handle to the cor- 
rect type of an row 

Construct sparse matrix setting u p  
the filename and flush interval 

checks access useage and flushes 
matrix to file in access-count 
greater than jhsh-interval 

Sparsematrix (Sstring filename, Index flushint) 

inline void 
checkaccess () 

inline Data& 
operator) (const Row& row, const Column& col) 

Returns a reference to the data in 
the matrix entry for given row and 
column 

void f lu sh row (Row& row, Row-Type& column-dat) 

This mge has been automaticalb generated with DOC++ 
DOC++ is 0 I995 ty Rdmd Wun&rling 114 

Mahc Zkkler 



20 What’s in SparsematrkH? 

Flush a row to disk writing row 
column data for each item in row 

Forces a flush to  file of all contents 
currentZy held an memory 

void flush-tofile () 

The Sparsematrix is a simple convenience class for holding entries in a sparse 
matrix. The matrix is a two dimensional array of items. 

This is not a general purpose sparse matrix class. The intended useage of 
this class is to  incrementally fill a sparse matrix that, in general, may not fit 
in memory. The rows and column indices are templatized types with the most 
popular intended types of row, column being integral types. 

For simplicity, we will optimize the use of row insertion and layout the 
memory accordingly. As a side-effect of this row overhead will be significantly 
higher ( 10 words or so). The column entry overhead will be one Column type 
and one Data type. 

There are many bells and whistles that could be added to this class. At 
present this class is overly minimalistic. 

There are no remove or deletion member functions since it is difficult t o  
retrieve things flushed to  disk efficiently. The user can get this effect by doing a 
-= of the current contents. Unfortunately, if the contents have been flushed to  
disk then the user has no easy way to  know the final value of a (row,col) entry 
in the matrix. 

Caveats: A performance assumption assumes that the number of 
column entries in a given row is relatively small 
(say typically less than a few hundred). If the 
average number of column entries exceeds 100-200 
then a specialization of this class would be in order 
to bypass the Sorted array insertions which are 
of O(N*N) where N is the number of entries in a 
given row. 

This class makes no assumptions of Row and Column 
indicies being contiguous or even being of integral 
type. 
functions and output >> operator for writing 
to disk. 

What is required are the usual comparison 

Future specializations of this class could take advantage 
contingous (or  nearly so) indices. 

This p g c  has k n  automatically gecncntcd with DOC+t 

DOC++ is @ 1995 by Roland Wunderlin. 
Make Zkklcr 

115 



20 What’s in SparsematrkH? 

Thk page has been rutomilicdll generated with DOC++ 

DOC++ is @I995 Roland Wvndeiling 
Makc Zctler 

116 



21 Sstring.H 

I 21 1 

This Sstring class allows us to  convert between various data types in addition 
to the usual string class utilities. 

to  build new functionality as needed. 
Sstring does not provide full functionality yet. The philosophy taken here is 

Historical note: We tried using STL string classes several times but had 
difficulty extending it and a great deal of dficulty dealing with our limited 
debuggers. We rely heavily on Sstrings and the debuggers could not always 
parse through STL correctly. 

Thb page has heen rutornaticalb generated with DOC++ 

DOC++ is @ 1995 by Roland Wundcrling 
Mallc &hkr  

117 



22 Sstring 

22 

class Sstring 

The Sstring class allows us to convert between various data types in addition 
to the usual string class utalities 

Public Members 
friend inline ostream& 

operator<< (ostream&, const Sstring&) 
Allow ostream to be a b e n d  of this 
class 

friend istream& 
operator>> (istream&, Sstring&) 

Allow tstrearn to  be a friend of this 
class 

friend Sstring 
operator+ (const Sstring&, const Sstring&) 

Allow global operator+ Sstring + 
String to be overloaded 

operator+ (const char*, const Sstring&) 
Allow global operator+ char* + 
String to  be overloaded 

operator+ (const Sstring&, const char*) 

friend Sstring 

friend Sstring 

Allow global operator+ Sstring + 
const char* to  be overloaded 

De fault constm ctor 

Copy constructor 

Specialized copy constructor for 
char*'s 

Sstring () 

Sstring (const Sstring &sl) 

Sstring (const char *sl) 

Sstring (const char *SI, size-t num) 
Specialized copy constructor for 
f i e d  number of chars 

Sstring (const short num ) 



22 Sstring 

Specialized copy constructor f o r  
short’s 

Sstring (const unsigned short num ) 
Specialized copy constructor for 
unsggned short’s 

Specialized copy constructor for  
ints ’s 

Sstring (const int num) 

Sstring (const unsigned int num) 
Specialized copy constructor for  
unsigned int ’s 

Sstring (const long num) 
Specialized copy constructor for 
long’s 

Sstring (const unsigned long num) 
Specialized copy constructor for 
unsigned long’s 

Sstring (const long long num) 
Specialized copy constructor for  
long ants’s 

Sstring (const float num) 
Specialazed copy constructor for 
floats’s 

Sstring (const double num) 
Specialized copy constructor for 
doubles’s 

Sstring (const boo1 val ) 
Specialized copy constructor for 
booleans ’s 

22.3 ”Sstring () Default destructor . . . . . . . . . . . . . . 121 

size-t size () const Return the string length in bytes 

SSTRING-OPDEF(==)(!=)(>)(>=)(<) 
(<=) (const unsigned int i) 

== operator 

operator = (const Sstring &SI) 

operator = (const char *sl)  

!Wring& 

Sstring& 

Assignment operator 

Thi. page has been automatically generated with DOC++ 

DOC++ is 0 1 9 9 5  Roland Wunderling 
M d t e  &Mer 

119 



22 Sstring 

Specialized assignment operator 
for char *'s 

Concatenates SI to end of Sstring. 
Sstring& operator += (const Sstring &sl) 

Sstring& operator += (const char *rhs) 
Concatenates char' to end of 
Sstring. 

User defined conversion f.om 
const char* to Sstring 

operator char* () User defined conversion from 
char* to Sstring 

operator boo1 () const 
User defined conversion operator 
from Sstring to  boolean 

User defined conversion operator 
from Sstring to short 

User defined conversion operator 
from Sstring to unsigned short 

User defined conversion operator 
from Sstring to ant 

User defined conversion operator 
from Sstring to unsigned ant 

User defined conversion operator 
from Sstring to long 

User defined conversion operator 
from Sstring to unsigned long 

User defined conversion operator 
from Sstring to  float 

operator const char* () const 

operator short () const 

operator unsigned short () const 

operator int () const 

operator unsigned int () const 

operator long () const 

operator unsigned long () const 

operator float () const 

operator double () const 



22 Sstring 

User defined conwersion operutor 
from Sstring to double 

template <class Type> 
operator Type* () const 

User defined conuersion operator 
from Sstring to a pointer of an ab- 
stract type 

Pack this string into a Send buffer 
for communication 

Unpack this string from a Recu 
buffer for communication 

void pack (Send& buf) const 

void un-pack (Recv& buf) 

Protected Members 
22.1 char* S our character string s .......... 122 

22.2 void copy (const char *sl) 
Copy the character string s l  to OUT 

s tr ings ........................ 122 

The Sstring class allows us to convert between various data types in addition 
to  the usual string class utilities. 

Sstring does not provide full functionality yet. The philosophy taken here is 
to  build new functionality as needed. One of the main reasons for this class is to 
bypass dealing with STL string class in the debugger. Also we are transparent 
(syntatically and Memory layout) the C sstring class. 

Defuult destructor 

Default destructor. Frees memory if s != 0 Never inherit from this class. Note 
that this destructor is not virtual. 

?him page hili bccn automatically gencratcd with DOC+i 

DOC++ IS OLD95 by Faland Wundeding 
Make Zckler  



22 Sstring 

Our character string s 

Our character string s. It is the first and only data item in this class so that its 
usage can be as close as possible with the normal sstring class. In particular, the 
memory layout should be identical so Sstring and string's can be used without 
conversions. 

22.2 

void copy (const char "sl) 

Copy the character string sl to our string s 

Copy the character string s l  to our string s. We new a full copy. To help 
prevent memory leaks we force the caller of this routine to  have set s to  0. 

Thi. v s e  ha. bccn auiomatiolly generated with DOC++ 

DOC++ is @IO95 by Roland Wunderling 
Makc &klrr 

122 



23 operator> > 

23 

extern istream& operator>> (istream &i, Sstring &SI) 

The following definations are defined in Sstring 

The following definitions are defined in Sstring.C to prevent multiple defini- 
tion WARNINGS. 

123 



24 Sbint 

24 

typedef long .int Sbint 

Typedef abstracting what the Prodispenser ,  Block-indexmapper, and reader 
classes think a large Integral tgpe is 

Typedef abstracting what the Procdispenser, Blockindexaapper, and reader 
classes think a large Integral type is. We want these to  be long long ints but 
all MPI implementations don’t support 64 bits. (Noteably some IBM systems) 



25 What’s in Utilities.H? 

25 

What’s in UtilitiesX? 

Names 

25.1 

25.2 

25.3 

template <class T> void 
Tcpy (T* p, const T* s, const int sz) 

Not thread safe. 

template <class T> void 
Tset (T* p, T s, const int sz) 

Not thread safe 

Alignment Helper class for reg-alignment 
GCC currently doesn’t like nested 
structs that don’t have explicit 
constractors 

template <class T> class 

template <class T> static size-t 
reqalignment (const T&) 

Find the required alignment of a 
given type 

The Ntype macro adds a ”N-” pre- 
fi. to the argument . . . . . . . . . . . . .  126 

Now we will specialize concrete in- 
trinsic types .................... 126 

#define Ntype (Typename) 

#define Type-to-enum-def (AAA) 

template <class Type> static size-t 
offsetgositions (Type ** arr, size-t begin-off, 

size-t numitems, size-t* offs) 
Given an Array of Type pointers 
this function fills in an array of 
oflset positions for each item in 
array taking size and alignment 
into account .................... 126 

This file contains miscellaneous typdef’s, enums, macros, generic algorithms, 
memory management stuff, etc. 

Thb p g c  has becn wtomaticalb gcncratcd with DOC++ 
DOC++ i s  01995 by Roland Wunderling 125 

Make Zicklcr 



25 What’s in Utilities.H? 

#define Ntype (Typename) r 25*1 
The Ntype macro adds a ”N-” prejix to the argument 

The Ntype macro adds a ”N-” prefix to  the argument. The following de- 
fine converts a given typedef name to an enumeration. This macro is used in 
conjunction with the Intrinsic-enum enum above. 

25.2 

#define Type-to-enum-def (AAA) 

Now we wzll specialize concrete intrinsic types 

Now we will specialize concrete intrinsic types. Note that pointer and const 
variations are NOT taken into account here. 

template <class Type> static size-t offset-positions 
(Type ** arr, size-t begin-off, size-t numitems, size-t* offs) r 25-3 

I I 

Given an Array of Type pointers this function fills in an array of oflset 
positions for each item in array taking size and alignment into account 

Given an Array of Type pointers this function fills in an array of offset positions 
for each item in array taking size and alignment into account. This function 
can begin with a beginning offset number of bytes. It is assumed that the 0 
offset is aligned for strictest alignment of any data item in the array. This 
function returns the total aligned size for this array by padding the size on the 
strictest requiried alignment. This allows arrays of these structures to be packed 
contiguously. 

The Type class must have size() and alignment() functions. 

Thb 

DOC++ is @I995 by 

has k e n  BYlomaticaik ~ e m a t c d  wilh DOC++ 

Roland Wundcrling 
Malt= Zcklcr  

126 



Class Graph 

Class Graph 

.............................................. 6 

.............................................. 10 

....................................... 17 

................................ 28 

.............................................. 23 

IR.f....l.LGl ............................................ 25 

.............................................. 31 

...................................... 113 

..... 

This p g e  has k n  automrtically gcmratd with DOC++ 
DOC++ i. 0 1 9 9 5  by Roland Wundcrling 127 

Malte ZKhler 



Class Graph 

. . . _ _ .  ._. .  .... .... . . . .  ....... ._. .  .... .., . .. . .. 36 

F c t t m - 1  . _ .  . _ _ .  . . . . . . . . . . . ... ...... .. .... ....... ...... 38 

c3 Memory stamp 

. .. .. . . . . . ... . .... .... ..-. ... .. .. . . .. . . . . ... .. 45 

............. .... ........... .... ....... 49 

.. . .. . . . . . . . . ... . . . . . ... .... .... . ... . . . 59 

. . . . . . . . . . . ._. .... .... ... . ... . . . . . . . . . . . . .. . .. 66 

_ _ _ . . .  ........................... ....... . .  . ... 69 

... ... . . . . .. . . .. .. . .. . . . . .... .... .... . .. . . . . . . 75 

... ... . ... . . . . .. . . . . .. .. . ... . .... . ... . _ .  . . . . . . 80 

.. ..........._... ...__...... . . . .  . . .  . . _ _  83 

This page has been autornatiolly generated with DOC++ 

DOC++ is @ I995 by bland Wunderling 
Makc Zhk1.r 

-~ 

128 



Class Graph 

... . . .  ............ ....... ......_.....__. . . . .  .. 89 

_ _ .  . . . . . . . ._ .  _... . ... .. .. . . . . . . . ... . ... 86 

c3 Keydata 

... ... . .  .......... ....... .. . .  . ... ............. I 91 

... ... . . . . . . .. ........ ..... .. . ... . .. . . . . ...... 96 

.......... .... ..............._......_... . .  . .  .. 98 

..... . ................ . . .  ............ ....... .. 101 

... ... .... .... ........-.. ............ . . .  . . . .  .. 102 

__ . . .  . .... ............... ...._..._........._.. 104 

129 
This p s e  has been autornrticrlly gemrated with DOC++ 

DOC++ is @ 1995 by b l m d  Wunderlin. 
Malt= Ziichlcr 



Class Graph 

Retriever 

I Alignment 

... ....... .... . .  .. . . . .  ....... .... .... ....... .. 109 

.............................................. 112 

.............................................. 114 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . 118 

... . . . . . .  ................................... . .  125 



Contents 

1 
2 
3 

4 

5 

6 

7 

8 

9 

10 

11 
12 
13 

14 

15 

16 
17 
18 

19 

20 

Contents 

At-data-ptr - Pointer to an At-data ..................... 4 
At-value-ptr - Pointer to  an  At-value ................... 5 

clones and copies ........................................ 6 vescb 5 Attjnit - Used to initialize At-data’s for global Attributes, 

At-data - Attribute can contain any number of data values 
which are species or local ................................. 7 

9 

‘‘ 
At-value - An At-value is a basic wmpper for At-data ... 
Commondata - Common-data is is a special type of 
At-value .................................................. 
Local-data - Local-data is  a special type of At-value 

14 

15 ..... 
Computed-data - Computed-data is a special type of 
At-value .................................................. 
AttBotifiee - Anyone who want’s to  be notified of new 

Attribute - Attribute provides a standard mechanism to 
access data and it provides a tree representation of all data 

16 

clones must inherit from this. ............................ 17 

in the problem space ...................................... 18 

tag-toatts - Global registry of Att-tag * to attributes lists 24 
attmapreader - a good old C style function! ........... 25 
ENTITYBLKSZ - At the moment we will hardwire the 
ENTITY-SIZE and ENTITY-MASK here ................ 26 
EF - Convenience define allows us the following sgntaa: to 
call an Attribute’s member functions: 
Attribute m e m f u n c  mernfunc-args - - - 

27 
Entity - An Entity can be used to represent an  object con- 
sisting of a collection of one or more Attributes .......... 28 
15.4 operator() ................................................. 32 
15.5 operator() ................................................. 32 

Exists-on ................................................. 37 
Ghost .................................................... 38 
Factory - A geneml class to  clone objects of a given type 39 

Token-obj - This i s  a temporary comment for the Token-ob 
class 41 
Filter - This i s  a temporary comment for the Filter class 42 

v v v  
EF(Topo1ogy)->up-ref( local, u, d ) ........................ 

..................................................... 

Thk 

DOC++ i s  0 1 9 9 5  by 

has been automatically generated with DOC++ 

Roland Wundcrling 
Malt. Ziicklel 

1 



Contents 

21 

22 

23 

24 
25 

26 
27 
28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

Initialize - Initialization class is  a place holder for items 
we want initialized before main i s  called and destroyed after 
main has ended ........................................... 
Expression-operators - Expression-operators class holds 
strings that name various operators ....................... 
CC-operators - Holds the C++ Expression operators and 
precedences ............................................... 
parenthesis - Const Sstring holding parenthesis chamcters 
whitespace - Const Sstring holding white space charac- 
ters ...................................................... 
digit - Const Sstring holding decimal digits ............. 
xdigit - Const Sstring holding hexidecimal digits ........ 
lower-alpha - Const Sstring holding lower case alphabet 
characters ................................................ 
upperalpha - Const Sstring holding upper case alphabet 
characters ................................................ 
name-char - Const Sstring holding all valid characters 
which can constitute a valid C++ variable name 
operator-end - Const Sstring holding set of all characters 
that can truncate a token of operator type 
M A X - T O K E N S  - Maximum number of Tokens that can 
exist in a given Sstring ................................... 
M A X - T O K E N L E N  - Maximum number of characters an  
indifidual token can be .................................... 
Tokenkind - Enumeration designating the types of tokens 
a string will be parsed into ................................ 
make-tokens - The make-tokens global function parses the 
given String into a army of tokens 
convert-tosstring - Concatenates an Array  of Sstrings to 
a single sstring ........................................... 
infix-to-postfix - Converts an  array of tokens in infix or- 
der to  postfix order using the provided Expression-operators 

infixstring-to-post fix - Converts a single infix Sstring 
to an array of postfix tokens using the provided Expres- 
sion-operators object to determine operators and prece- 
dences .................................................... 
infixstring-topost fix - Converts a single infix Sstring to 
a postfix Sstring using the provided Expression-operators ob- 
ject t o  determine opemtors and precedences ............... 
SPECIESBLK-SZ - At the moment we will hardwire the 
SPECIES-SIZE and SPECIES-MASK here ............... 
Local - Local provides storage space f o r  an Attribute's local 
data and provides a pointer back to the Entity who's data it 
holds so the Species it belongs to  can find all of the Entitys 
it has ..................................................... 

.......... 
................ 

....................... 

object to determine opemtors and precedences ............ 

43 

44 

46 
47 

48 
49 
50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

This pp has been automatically gcnerrtcd with DOC++ 

DOC++ is @ 1995 by Roland Wunderling 
Make Zckler  

2 



Contents 
~~ ~ 

42 
43 

44 

45 

OuterJimits .............................................. 66 
Attinfo - The Att-info class is a helper class that holds 
Attribute specific infomation relative to a particular Species 67 

Speciesinfo - The Species-info class is a helper class to  
Species that holds Species - Species memory relocation in- 
formation ................................................ 69 

Species - Class Species manages a collection of Entity Lo- 
cals (local data for an Entity) that each have an identical set 
of Attributes .............................................. 70 

Class Graph .............................................. 77 

Thb p ~ e  has k n  automatically (Irneratd with DOC++ 

DOC++ is 8 1 9 9 5  by Roland Wunddiq 
Malt.  L k l c r  

3 



1 At -dat a p t  r 

ri class At-data-ptr 

Pointer to an At-data 

Inheritance 

Pointer to an At-data. Comparisons between At-data-ptrs take place on the 
actual At-datas they represent. 

This ~ g e  ha. been automatically generated with DOC++ 

DOC++ is @ I P S  by 4 Roland Ww&rIiw 
Makc Z c k l e r  



2 At -value-ptr 

tern late (class Type> class At-value-ptr : public rz At -fat a-pt r 

Pointer to an  At-value 

Inheritance 

Pointer to an At-value. For conversions between At-data-ptr and At-value* 

Thk p i e  ha. heen automaticJ1, generated with DOC++ 
DOC++ is  0 1 9 9 5  by Roland Wunderling 5 

Make &Mer 



3 Att in i t  

struct Attinit 
L 

Used to initialize Atdata’s for global Attributes, clones and copies 

P 

This page has been automatically generated with DOC++ 
DOC++ I. 0 1 9 0 5  by Roland Wvnderling 6 

Hake Zhhler 



4 Atdata  

Y4 1 

Attribute can contain any number of data values which are species or local 

Inheritance 

Public Members 
At-data (const Sstring & nam, Attribute * par) 

Constructor called when making 
an At-data for an Attribute’s clone 
or copy 

virtual “At-data () Destrzlctor to see that our sub- 
classes are properly freed 

virtual int compare (const At-data& rhs) const 
Compare two diflerent At-data’s 8 

bool 
Determine if this At-data is less 
than another 

4.1 

operator< (const At-data& rhs) const 

bool operator<= (const At-data& rhs) const 
Determine if this At-data is less 
than or equal to another 

Determine if this At-data is equal 
to another 

bool operator== (const Atdata& rhs) const 

bool operator!= (const At-data& rhs) const 
Determine if this At-data is not 
equal to another 

bool operator>= (const At-data& rhs) const 
Determine if this At-data is 
greater than or equal to another 

bool operator> (const At-data& rhs) const 

~~ 

7 
This pagc has been automatical4 pcncrsted with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wvndcrlmp 
Make 2ockIcr 



4 At -dat a 

Determine if this At-data is 
greater than another 

Make a copy of ourselves to be 
passed around like a bad rumour. 

virtual At-dataptr 
COPY 0 

virtual At-data-ptr 
create (Sstring& initstr) 

Create a new At-data using based 
o f f  the provided string 

virtual void 
pack (Send&) const 

Fill the given buffer to send the 
essence of an At-data. 

un-pack (Recv&) Set the At-data to whatever is  con- 
tained in the Recv buffer. 

virtual void 

virtual void 
unpacklocal-data (Local*, Recv&) 

Set the At-data value for  this lo- 
cal to whatever is  contained in the 
Recv buffer 

Attribute can contain any number of data values which are species or local. 
At-data is the abstraction of this data. 

virtual int compare (const At-data& rhs) const r *-l 

Compare two different At-data’s 

Compare two different At-data’s. First, we compare by name, if they’re equal, 
we compare by type. This puts the order of At-data’s by type to be: Computed 
> Common > Local The At-data’s must be of the same Type of At-value. 

Return Value: s -1 if lhstrhs, 0 if lhs==rhs, 1 if Ihs>rhs 

This p s e  has b c ~ n  automaticalk gcnerafd with DOC++ 

DOC++ I$ @ 1995 by Roland Wunderling 8 
Makc I k k l c r  



5 At-value 

5 

template <class T> class At-value : public At-data 

An At-value is a basic wrapper for At-data 

Inheritance 

E 3  At -value 

Localdata 

Computeddata 

Commodata 

Public Members 
LocalArr typedef void 

(* FuncPtr) ( Entity *, Attribute *, void *ret ) 
Signature of function used by  com- 
puted data 

At-value (const Sstring & nam, Attribute * par) 
Basic constructor that creutes an 
At-value of the proper type and 
valve 

Default constructor - this is used 
b y  the system (and internally 
within At-value) but should never 
be used explictly 

At-value () 

virtual -At-value () Run  of the mill empty destructor 

5.2 T& ref (Local * loc) Get a constant reference to the 
datu for the given local . . . . ~. . . . 12 

const T& ref (Local * loc) const 

9 



5 At-value 

T 

void 

void 

void 

5.3 Sstring 

Sstring 

void 

void 

void 

size-t 

void 

Get a constant reference to the 
data for the given local 

data (Local * loc) const 
Get the data value for the given lo- 
cal 

data ( const T& value ) 
Set the data value to the given 
value - only valid for Common 
Data 

data (Local * loc, const T& value) 
Set the data value for the given en- 
t i t y  

Set the function that this uses if 
it’s computed data 

Get the value for this At-data as a 
string .......................... 

Get the value for the given entity 
as a string 

setfunc (const Sstring& str) 

sstring () const 

sstring ( Local * loc ) const 

sstring-value ( const Sstring& value ) 
Use this string to set the value for 
this At-data 

sstring-value ( Local * loc, const Sstring& value ) 
Use this string to set the value for 
this Entity 

offset ( size-t offs ) S e t  your offset to the given size 

offset () const 

arraysize ( Index sz ) 

Find out what offset is  being used 
for this At-value. 

Change the array size 

12  

At -dat a-pt r 
COPY 0 Make a copy of ourselves to be 

passed around like a bad rumour. 

5.4 At-data-ptr 
create (Sstring& initstr) 

Create a new At-data using based 
08 the provided string . . . . . . . . . .  12 

void pack (Send& buf) const 

This pegc ha. been rutomattically generated with DOC++ 

DOC++ is @ 1995 Roland Wundcrling 
Make &kler 

10 



5 At-value 

Fill the given buffer to send the 
essence of an At-data. 

void unpack (Rem& buf) 
Set the At-value to whatever is 
contained in the Recv buffer. 

void unpacklocal-data (Local* loc, b c v &  buf) 
Set the At-data value for this lo- 
cal to whatever is contained in the 
Recv buffer 

Protected Members 
T data- real data for  common, default 

data for local (when implemented) 

boo1 valid-offset for local data 

size-t offset- for  local data 

FuncPtr & for calculated data 

Sstring &name for calculated data 

Index arrsize For local-array 

static Registry cSstring, FuncPtr> * 
funcReg for calculated data 

int owner for communicating local data 

void data-value ( const T& value ) 
Do the actual work of setting a 
value 

void func-value ( Sstring str ) 
Do the actual work of setting a 
function f o r  this computed data 

Set the value of this and all copys 
of this common data 

Set the function pointer of this and 
all copys of this computed data 

Do the actual work of copying that 
a few functions need . . . . . . . . . . . 

void all-data-values ( const T& value ) 

void allfunc-values ( const Sstring& fxname ) 

5.1 void set-copy (At-value-ptrtT> copyabj) 

13 

11 



5 At-value 

Sstring sstring () const 

5.2 

T& ref (Local * loc) 

Get a constant reference to  the data for the given local 

Get a constant reference to the data for the given local. Note: this is neither 
thread nor comm safe. You have been warned. 

Get the value for this Atda ta  as a string. At this level (no associated local*), 
we display the array size for Local arrays and the function name for calculated 
data. 

5.4 

At-dataptr create (Sstringk initstr) 

Create a new A t d a t a  using based o f  the provided string 

Create a new At-data using based off the provided string. This string has the 
format ” At-data-Type Type name value” where At-data-Type is 1 for common 
data, 2 for local data, 3 for calculated data or 4 for local array. Type should 
match our templated type, the name is just that and the value is the real value 
for common data, a default value for local data (not currently used), a function 
name (that’s been registered) for calculated data or the size of the local array. 



5 At-value 

I 5.1 1 
void set-copy (At-value.qtr<T> copy-obj) 

Do the actual work of copying that a few functions need 

Do the actual work of copying that a few functions need. This sets the value of 
the copy based on the value of our member data. 

This p g c  has brrn automatidly gcmrated with DOC++ 

DOC++ i s  @1PQ5 by bland Wunderliq 
Make Z&hlcr 

13 



6 Common-dat a 

I template <class T> class Common-data : public 
At -value<T> I 

Common-data is  is a special type of At-value 

Inheritance 

Public Members 
6.1 T& ref (Local *) This might not be thread-safe - 

data is .... ........... . .  .. .... .. 14 

void data ( const T& value ) 
Set the data value to  the given 
value - only valid for  Common 
Data 

void data (Local * loc, const T& value) 
Set the data value for the given en- 
tit y 

6.1 

T& ref (Local *) 

This might not be thread-safe - data is  

This might not be thread-safe - data is. This is also not safe for multi-processor 
operations. 



7 Localdata 

7 

template <class T> class Local-data : public 

At-value<T> 

Localdata is 0 special type of At-value 

Inheritance 

Atdata 

Public Members 
T& ref (Local *loc) Thas might not be thread-safe - 

dat0 as. 

This p i e  has brrn automatically generated with DOC++ 
DOC++ is @ 1995 by Roland Wundrrling 15 

Mdtc Zbckler 



8 Computed-data 

template <class T> class Computed-data : public r8 At-value<T> 

Computed-data is a special type of At-value 

Inheritance 

Thi. p ~ c  hi been autornaticalfy geerrrited with DOC++ 

DOC++ is 0 1995 by Roland Wvndcrlinp 16 
Make Z&kler 



9 AttlVotifiee 

class AttlVotifiee 
. 

T h i  p s c  ha. k n  automatically s e r e r a i d  with DOC++ 

DOC++ is 0 1 9 9 5  b, Roland Wunderling 17 
Matte Lirhlci 



10 Attribute 

class Attribute rio 
Attribute provides a standard mechanism to access data and i t  provides a tree 

representation of all data in the problem space 

Public Members 
static Attinit 

glo b a h t  i The global At-data-init used to ini- 
tialke the obj- Attributes 

Attribute (Attinit& ati, const Sstring& nam = ’”’, 

Attribute’s basic constructor - 
this does nearly everything except 
cleaning the bathroom 

10.2 Mutex* lock () Get a Mutex to lock down access to 
certain operations of all attributes 

Attribute * par = NULL) 

................................ 21 

static void 
assigngids () Assigns gids to all currently cre- 

ated Attributes of  both type and 
kind ids 

int proc-owner (Gid gid) 
Returns the processor rank num- 
ber owns the given gid for this At-  
tribute 

10.3 static int nurnatt-threshold () 
Returns the number of 

kind-ids) threshold before the 
Species::update-att-threshold() 
mumber function is called . . . . . . 

Assign a data ID for At-datas. 

Attributes (t ype-ids + 

22 

int assign-did (At-dataptr dat) 

10.4 void copy-data (Aa(At-data-ptr)&) 

This pse has been automatically sewrated with DOC++ 

DOC++ I @ 1995 by %land Wunderling 18 
Mdtt Zicklcr 



10 Attribute 

Get a copy of the data for this At- 
tribute ......................... 22 

Attribute* obtainattribute ( const Sstring& clonellame, 
const Sstring& datname, 
const &ring& dat-value ) 
Get a clone of this species that 
has the given data set to the given 
vake  

Attribute* obtainattribute ( const Sstring& clonename, 
const int dat id ,  
const Sstring& dat-value ) 
Get a clone of this species that 
has the given data set to the given 
value 

virtual Attribute* 
clone (const Sstring &, Aa(Sstring)&) 

Create a new clone of this At- 
tribute type given an array of 
Sstrings to initialize its data val- 
ues 

Find the amount of local space this 
Attribute requires 

Find the local alignment this At- 
tribute requires 

Set the alignment of all the local 
data for this Attribute 

size-t size () const 

size-t alignment () const 

void offset ( const size-t offs ) 

static Attribute* 
findatt (const Sstring& name) 

Find an Attribute given i ts  name 

static Attribute* 
findatt (const int& kid) 

Find an Attribute given i ts  ID 

At-data-ptr 
finddat (const int did) 

Find an At-data given i ts  ID 

Perform general initialization af- 
ter main() has started .......... 22 

10.5 virtual void 
init () 

10.6 virtual void 

This page has k e n  automatically gerrrated with DOC++ 

DOC++ 81 @ 1995 by Roland Wundcrlin. 
Maltc Zkklcr 

19 



10 Attribute 

finalize () Perform shutdown operations at 
the end of main() . . . . . . . . . . . . . . 

Protected Members 
static Registry CSstring, Attribute *> 

attnamreg All attributes (except species spe- 
cific), indexed by name 

All attributes (except species spe- 
cific), indexed by  I D  

static Registry <int, Attribute *> 
attjdreg 

static Att-Notifiee* 
clonerotifiee Hook for notification of newly 

cloned Attributes 

static bool 
atmost-one- Determines i f  only one of this type 

of Att is allowed per Species 

commdefining- Determines i f  this Attribute should 
be transmitted across processors 

A a  (Attribute *) This only needs to be maintained 
for the root clone os long as all 
copies know who that is 

A m y  of species’ that reference us; 

static bool 

S a  (Species *) 

A a  (Attribute *) All clones of this type - only stored 
by  the root-type 

Sa (Gid) Array of gid cutofls to know who 
owns a given gad. 

A a  (At-dataptr) ptrs to an kind’s data 

datreg 

Registry cSstring, Atdata-ptr> 

Registry cint, A t d a t a p t r >  
All of the data items that this at- 
tribute has, indexed by did 

All of the data items that this at- 
tribute has, indexed by  name 

Attinit  ati- Used to initialize copies of the data 

datnamreg 

23 

20 



10 Attribute 

Attribute* gen-clone ( const Sstring &s, 
Aa(Sstring)& at-valstrs ) 

This is called every time we need a 
new clone of a particular Attribute 
defined by  an array of strings 

template <class Self> Attribute* 
gen-clone ( const Sstring &name, 

A_a(At-data-ptr)& dats, Self *) 
This i s  called every time we need a 
new clone of a particular Attribute 

10.1 template <class Self> Attribute* 
species-copy ( Self *, Species * species, int owner ) 

Species calls this for every At-  
tribute in its list . . . . . . . . . . . . . . . 

void assigngid () Assign gids t o  all Entities that 
have this Attribute or one of this 
Attributes children 

23 

Attribute provides a standard mechanism to access data and it provides a tree 
representation of all data in the problem space. Tricks: Clones itself to maintain 
tree structure across all processors. Copies itself to keep offset to local data 
for every species that uses it. Provides unique typeid and kindid for easy 
comparison. Provides constraints to establish acceptable co-existance of two 
Attributes. 

r Mutex" lock () 

Get a Mutex to  lock down access to certain operations of all attributes 

Get a Mutex to  lock down access to  certain operations of all attributes. Cur- 
rently this is just used for cloning to ensure that the clones are constructed in 
the same order on all processors. 



10 Attribute 

10.3 

static int numatt-threshold () 

Returns the number of Attributes (type-ids + kind-ids) threshold before the 
Species::update-att-threshold() mumber function is called 

Returns the number of Attributes (typeids + kindids) threshold before the 
Species::updateatt-threshold() mumber function is called. This allows Species 
to be notified when the number of attributes has exceeded some threshold value. 

,- 10.4 1 

void copy-data ( A a (  Atdata-ptr) &) 

Get a copy of the data for this Attribute 

Get a copy of the data for this Attribute. Note that this indirectly news memory 
for the At-datas, so they should be freed when you’re done with them. 

10.5 

virtual void init () 

Perform general initialization after main() has started 

Perform general initialization after main() has started. The user should always 
call this from main after the Comm object has been constructed. 

T h i  page has bmn automatically gmcralcd wilh DOC++ 

DOC++ is  0 1 9 9 5  by bland W v n d c r l t ~  
Makc 26drlcr 

22 



10 Attribute 

10.6 

virtual void finalize () 

Perform shutdown operations at the end of main() 

Perform shutdown operations at the end of main(). The user should always call 
this if Comm is being used. 

10.1 

template cclass Self> Attribute* species-copy ( Self *, 
Species * species, int owner ) 

Species calls this for every Attribute in its list 

Species calls this for every Attribute in its list. If the given Attribute has no 
local data, it returns itself. Otherwise, it will create an exact copy of itself and 
give that to  the species. 

This page hrs been autornlticalb generated with DOC++ 

DOC++ is 0 1 9 9 5  Roland Wvnderling 23 
Maltr Zcklcr  



11 tag-toatts 

(ent-p,att-type) extern Registry <Vector<int>, 
S _a (At tri bu te *) > tag -t o at t s 

Global registry of Att-tag * to attributes lists 



12 at t map reader 

12 

void attmapreader (char *filename) 

a good old C style function! 



13 ENTITY B L K S Z  

13 

const size-t ENTITYBLK-SZ 

A t  the moment we will hardwire the ENTITYS ' IZE and ENTITY-MASK here 

At the moment we will hardwire the ENTITYSIZE and ENTITYMASK here. 
The proper way is to call the ReferenceJcArray containing the Entities but 
Entity is a lightweight class and can't afford the reference to the container. So 
we will use the mask. 



14 EF 

I l4 i 
#define EF (att-type) 

Convenience define allows us the following syntux to call an Attribute’s 
member functions: 

Attribute naem-func mem-func-args - - ~ v u u EF(Topo1ogy)->up-ref( local, 
11, d )  

This pas= has been rvtornit iulb gmcratcd with DOC++ 
DOC++ is @ I995 $ Roland Wunderling 27 

Makt E k l c r  



15 Entity 

A n  Entity can be used to represent an object consisting of a collection of one 
or more Attributes 

Public Members 
15.1 

15.2 

15.3 

15.4 

15.5 

15.6 

15.7 

15.8 

15.9 

inline Entity () Default Constructor ............ 

inline Species* 
Returns the Species this Entity be- 
longs to 

void bind (Species* newspecies) 
Binds an Entity to a species .... 

inline void 

species () 

binddocal (Local *loc) 
Binds an Entity to a known Local 
................................ 

inline Attribute* 
operator() (Attribute* reqat t )  const .............. 

inline Attribute* 
operator() (int a t t i d )  const ....................... 

remove (Freelist<Ra(Entity), Entity>&, bool, 
inline void 

bool) 
Remove an entity . . . . . . . . . . . . . .  

inline void 
relocate (Entity *) 

Relocate an entity to a new posi- 
tion ............................ 

inline void 
addatt (Attribute *newatt) 

Adds an Attribute to an Entity . 

Adds a Est of Attributes to an En- 
t i t y  ............................ 

void addatts (Sa(Attribute*)& newatts) 

15.10 inline void 

31 

31 

31 

32 

32 

32 

32 

33 

33 

Thb p g e  has k n  rutomatically gcncratld with DOC++ 

DOC++ i s  019% by Roland Wundoling 28 
Malte k k l e r  



15 Entity 

removeatt (Attribute *oldatt) 
Removes an Attribute from the 
Entity .......................... 33 

Removes a list of Attributes from 
15.11 void removeatts (Sa(Attribute*)& oldatts) 

the Entity ...................... 34 

inline Gid gid (Attribute* a t t i d )  
Returns the type-id Attribute spe- 
cific gid for this Entity 

Returns the Attribute specific gid 
for this Entity 

inline Gid gid (int a t t id )  

15.12 Gid geid () const Returns the Global Entity ID ... 34 

inline operator Local* () const 
User defined conversion opera- 
tor from Entity pointer to Local 
pointer so Entities and Locals can 
be used interchangeably 

Pack this entity into a send buffer 
15.13 void pack (Send& buf) const 

................................ 34 

static void 
backup () Produce a full backup of all Species 

data containing Entities 

static void 
swap-with-backup () 

Swap the current copy of all 
Species data with the backup copy 

static void 
removebackup () 

Remove the backup copy of all 
Species data 

hasspecies (Species* species-) 
inline bool 

Returns true if the Entity is of the 
provided Species 

inline bool 



15 Entity 

hasspecies (const Sa(Species*)& specieslit) 
Returns true if the Entity’s Species 
is one of the Species pointers in 
the provided Species list 

15.14 inline bool 
hasatt (int a t t i d )  

Returns true i f  the Attribute id 
provided is contained in  the En- 
taty’s Attribute list ............. 35 

15.15 inline bool 
has a t  t (Attribute *at t ) 

Returns true i f  the Attribute pro- 
vided is contained in the Entity’s 
Attribute list ................... 35 

15.16 inline bool 
has a t  t (const Sa( int )& att idlis t ) 

Returns true i f  any of the At- 
tribute ids provided in the At- 
tribute list is contained in  the En- 
tity’s Attribute list ............. 35 

15.17 inline bool 
hasatt (const Sa(Attribute*)& attlist) 

Returns true if a n y  of the At- 
tributes provided in the Attribute 
list is contained in the Entity’s At- 
tribute list ..................... 36 

Default Destructor ............. 36 15.18 inline ’Entity () 

Protected Members 
Local* local Pointer to Local which contains 

the actual data for this Entity 

An Entity can be used to  represent an object consisting of a collection of one 
or more Attributes. It is a stable placeholder used to  reference any data about 
the ”Entity” it represents. Its data is organized by its Attributes. Entities that 
have the same set of Attributes are collectively managed by a Species. The 
actual data associated with an Entity lives in the Species data space. This class 
contains a single pointer that can access the data. The address of this pointer 
will not change without calling a relocate() member function. Derived types of 
this class should overload this function accordingly. By design this class has no 
virtual functions. If a derived type requires virtuals then Entity is probably not 

~ ~~~ ~~~ 

This wgc ha. k n  mutomatically sencrated with DOC++ 
DOC++ is 0 1995 by Roland Wunderlin. 30 

Make Liickler 



15 

void bind (Species* newspecies) 

Entity 

the appropriate class to  use. A single virtual would incur lOORemember that 
an Entity consists of any number of Attributes and these Attributes can have 
all the virtuals one wants. 

-. 15.1 1 

inline Entity () 

Default Constructor 

Default Constructor. Initially points to  nothing and must be bound before use. 

Binds an Entity t o  a species. This needs to  be called before the Entity can be 
used. It may also be called to  relocate the Entity to a new Species. The Entity 
will get its Local from the Species. 

15.3 

inline void bindJoca1 (Local "loc) 

Binds an Entity to a known Local 

Binds an Entity to  a known Local. Used by mutator threads. 

31 



15 Entity 

I 15-4 1 
I I inline Attribute* operator() (Attribute* req-att) const 

Returns a pointer to  the Species specific copy of the requested Attribute’s 
typeid. If the Species is not associated with the given Attribute’s typeid 
then NULL is returned. When the Attribute’s id or typeid is known it is much 
faster to use the operator()(int id) member function. 

I 15-5 I 
inline Attribute* operator() (int a t t i d )  const 

Returns a pointer to  the Species specific copy of the requested Attribute id. The 
id can be a typeid or kindid. If the Species is not associated with the given 
Attribute id then NULL is returned. 

15.6 

inline void remove (FreeJist<R-a(Entity), Entity>&, 

bool, bool) 

Remove an entity 

Remove an entity. If this leads t o  the removal of other entities then pack their 
addresses into the provided array for someone else to remove. Derived types 
should overload this member function accordingly. 

inline void relocate (Entity *) 

Relocate a n  entity to a new position 

Relocate an entity to a new position. Derived types should overload this member 

This page has been automatically gcncralcd with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wunderling 
Malt= Zickler 

32 



15 Entity 

inline void removeatt (Attribute "oldatt) 
? 

function accordingly. Specifically, in this class we do not inform the Species or 
Local when we moved. If this is required we force the user to  Derive from us 
and overload this function. 

15.8 

inline void add-att (Attribute "new-att) 

Adds an Attribute to a n  Entity 

Adds an Attribute to an Entity. The Entity will change Species. 

15.9 

void addat t s  (S-a(Attribute*)& new-atts) 

Adds a list of Attributes to a n  Entity 

Adds a list of Attributes to  an Entity. The Entity will change Species. 

Removes an Attribute from the Entity 

Removes an Attribute from the Entity. The Entity will change Species. 



15 Entity 

15.11 

void removeAts (S_a(Attribute*)& oldatts) 

Removes a list of Attributes from the Entity 

Removes a list of Attributes from the Entity. The Entity will change Species. 

,-, 15.12 1 

Gid geid () const 

Returns the Global Entity ID 

Returns the Global Entity ID. The Entity-container geidsynco member func- 
tion has previously setup the geid's. 

15.13 

void pack (Send& buf) const 

Pack this entity into a send buffer 

Pack this entity into a send buffer. That involves packing its geid, the list of 
defining attributes and their data. 

inline boo1 hasatt (int a t t j d )  

Returns true if the Attribute id provided as contained in the Entity's Attribute 
list 

34 



15 Entity 

Returns true if the Attribute id provided is contained in the Entity’s Attribute 
list. The Entity Attribute list includes all parents up the Attribute tree. In par- 
ticular, passing in the root Attribute id will always return true. 

I- 15.15 1 
inline bool hasatt (Attribute *att) 

Returns true if the Attribute proaided is contained in the Entity’s Attribute list 

Returns true if the Attribute provided is contained in the Entity’s Attribute 
list. The Entity Attribute list includes all parents up the Attribute tree. In 
particular, passing in the root Attribute will always return true. 

15.16 

inline bool hasatt (const S-a(int)& attidlist) 

Returns true if any of the Attribute ids provided in the Attribute list is 
contained in the Entity’s Attribute list 

Returns true if any of the Attribute ids provided in the Attribute list is contained 
in the Entity’s Attribute list. The Entity’s Attribute list includes all parents 
up the Attribute tree. In particular, having the root Attribute id in the list of 
Attributes passed to this member function will always result in the return value 
being true. 

15.17 

inline bool hasatt (const S-a(Attribute*)& attlist) 

Returns true if uny of the Attributes provided in the Attribute list i s  contained 
in the Entity’s Attribute list 

This p a ~ c  ha. been automatically yencrated with DOC++ 

DOC++ is Q19% b Roland Wunderling 
Makc Ziwkler 

35 



15 Entity 

Returns true if any of the Attributes provided in the Attribute list is contained 
in the Entity’s Attribute list. The Entity’s Attribute list includes all parents 
up the Attribute tree. In particular, having the root Attribute in the list of 
Attributes passed to  this member function will alway result in the return value 
being true. 

I 15-18 I inline “Entity () 

Default Destructor 

Default Destructor. This destructor is intentionally not virtual. Derived 
types are also meant to  have non-virtual member functions and destructors. 

36 



16 Exists-on 

16 

class Exists-on 

This class keeps track of the processor number that an entity resides on. 

37 
This 

DOC++ is @ 1995 by 

has h e n  .wtomrtic~lh/ .ceratcd with DOC++ 

b l a n d  Wvnderlins 
Mate &kler 



17 Ghost 

17 

class Ghost 

Tag an Entity as being owned by another processor. 

This -(IC has been automatically generated with DOC++ 

DOC++ is @ 1 9 s  by b l a n d  Wundcrling 38 
Makc Zickler 



18 Factory 

template <class Type, class ArgType> class Factory 
A 

Public Members 
Factory () Default constructor 

virtual -Factory () Default destructor 

boo1 fmdarg ( const ArgType& arg, Index& pos ) 
See i f  an argument exists and its 
position i f  it does 

const ArgType& newarg ) 
18.1 void updatearg ( const ArgType& oldarg, 

Update an the given argument to  a 
new value ........ .............. 39 

18.2 Type* clone ( ArgType& arg ) 
Get a pointer to the unique in- 
stance of the given type defined by  
the given argument type ...... . . 40 

Fills an army with all the clones 
we have manufactured to  date 

void all-clones (Aa(Type*)& arr) 

A general class to  clone objects of a given type. Makes sure that there is only 
one instantiation of the given type for a given argument type. 

18.1 

void updatearg ( const ArgType& old-arg, const 

ArgType& new-arg ) 

Update an the given argument to a new value 

Update an the given argument to  a new value. Called when the object that 
the given argument represents gets updated so that the argument and object 
continue to  match. 

This p ~ e  hrs been automatically gemrated with DOC++ 

DOC++ is @ 1995 by 39 Roland Wundcrling 
Maltc 26cLlrt 



18 Factory 

18.2 

Type* clone ( ArgType& arg ) 

Get a pointer to the unique instance of the given type defined by the given 
argument type 

Return Value: 
Parameters: 

s Pointer t o  the unique instance 
The - argument that uniquely defines the requested 
instance 

T ~ L  p g c  has bccn autornatiulb gemmaked with D O C t i  

DOC++ is 0 1 9 9 5  by Roland Wvndcrling 
Mike L k l e r  

40 



19 Token-obj 

19 

class Token-ob j 
- 

This is a temporary comment for the Token-ob class 

I 

This page has been automatically gcncratd with DOC++ 
DOC++ ir 0 1 9 9 5  by Roland Wundcrli- 41 

Make Zirhlcr 



20 Filter 

This is a temporary comment for the FzZter class 

42 
Thm paw has been automatiully senerated with DOC++ 

DOC++ is 0 1 9 9 5  by bland Wunderling 
Make &hler 



21 Initialize 

21 

class Initialize 

Initialization class is u place holder for  items we want initialized before main 
is called and destroyed after main has ended 

Public Members 
Initialize () Default initialization 

Initialize (const Initialize&) 
Default copy constructor. 

21.1 Initialize& operator= (const Initialize& rhs) 
Equals operator .... . . . . . . . . . . . . 

virtual -Initialize () Default Destructor. Hidden from 

43 

everyone. 

Initialization class is a place holder for items we want initialized before main 
is called and destroyed after main has ended. 

Just for diagnostics. We want Memorypool and Memorymanager to  be 
first and' last things constructed and deleted. This is required for accurate 
Memory-??? diagnotics 

So we build a dummy class that hopefully gets contructed first and hence 
deleted last. In our destructor we actually call the diagnostic routines of the 
memorymanager 

21.1 

Initialize& operator= (const Initialize& rhs) 

Equals operator 

Equals operator. Shallow copy written prevent compilier warnings 



22 Expressionaperators 

22 

class Expression-operators 

Expression-operators class holds strings that name various operators 

Public Members 
Expressionsperators () 

Default constructor. 

22.1 inline void 
insert (const Sstring& opname, int precedence) 

Inserts given operator name an 
registry and sets the precedence 
level for the operator ........... 45 

inline void 
remove (const Sstring& opname) 

Removes given operator name 
from registry. 

inline boo1 
is-operator (const Sstring& opname) 

Returns boolean true if given op- 
erator name is in the list of regis- 
tered operator names 

Returns the precedence level for 
22.2 inline int precedence (const Sstring& opaame) 

given operator name ........... 45 

inline void 
report () 

'Expression-operators () 

Report out diagnostics about the 
Expression-operators 

Default destructor. 

inline void insert (const Sstring& opname, int prece- r 22.1 
dence) 

44 



22 Expressionaperators 

Inserts given operator name in registry and sets the precedence level for the 
operator 

Inserts given operator name in registry and sets the precedence level for the 
operator. The precendence level must be greater than 0. 

inline int precedence (const Sstring& opname) r 22.2 

Returns the precedence level for given operator name 

Returns the precedence level for given operator name. Returns -1 for 
the precedence level if operator is not in list of known operator names. 

This PKC I- bcrn autornaticdb gewratcd with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wunderlin. 
Makc Zhklcr 

45 



23 CCaperators 

23 

extern Expression-operators CC-operators 

Holds the C++ Expression operators and precedences 



24 parenthesis 

I 24 1 

const Sstring parenthesis ( ” ()” ) 

Const Sstring holding parenthesis characters 

47 
Thm wgc has been automatically generated with DOC++ 

DOC++ is @ 1995 Roland WvnLrling 
Makc tickler 



25 whitespace 

const Sstring whitespace ( ” \t\n\r\f\v” ) 



26 digit 

I 26 1 
I I const Sstring digit ( "0123456789" ) 

Const Sstring holding decimal digits 

Thk page h.s been automatically gemratd with DOC++ 

DOC++ is @ 1995 b Roland Wunderlin. 49 
Makc L k l e r  



27 xdigit 

const Sstring xdigit ( "0123456789abcdefABCDEF" ) 
b 

Thi. p g c  has becn automatically g m r a t d  with DOC++ 

DOC++ is @lPpS by Roland Wvnhrling 50 
Make Zkkler  



28 loweralpha 

const Sstring lower alpha ( ” abcdefghijklmnopqrstu- 

vwxyz” ) 
I 

This page has bccn automatically gmcratcd with DOC++ 
DOC++ is QlWS by Roland Wunderling 51 

Makc Z k k l c r  



29 upperalpha 

const Sstring upperalpha ( ” ABCDEFG HI- 

JKLMNOPQRSTU- 
VWXYZ” ) 

Const Sstn’ng holding upper case alphabet characters 

52 
T h i  page has b e n  mtomitiol ly  sentrated with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wvndcrling 
Make Z k k l e r  



30 name-char 

const Sstring name-char (”-” ”abcdefghijklmnopqrstu- 

vwxyz” ” ABCD EFG HI- 
JKLMNOPQRSTUVWXYZ” 
”0123456789”) 

Const Sstring holding all valid characters which can constitute a valid C++ 
variable name 

T h i  wge ha. h e n  autornaticalb gcrrrrted with DOC++ 
DOC++ is 0 1 9 9 5  by Roland Wvnderling 53 

Make Z&kkr 



31 operator-end 

31 

const Sstring operator-end (” \t\n\r\f\v” ” 0” 
” 0123456789” ”abcde- 
fghij klmnopqrstu- 
vwxvz” ’ ABCDEFGHI- 
JKLMNOPQRSTU- 
v w XY Z” ) 

I 

Const Sstring holding set of all characters that can truncate a token of 
operator type 

This page has bcen automatically gorrrrtcd with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wumkrliq 
Maltc &kkr  

54 



32 MAX-TOKENS 

I 32 rn 

const int MAX-TOKENS 

Maximum number of Tokens that can exist an a given Sstn'ng 

This page has been automatically ~cnerated with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wvndcrling 
Makc 7ikklm 

55 



33 MAX-TOKENLEN 

const int MAX-TOKENLEN 
L 

56 



34 Tokenkind 

34 

enum Tokenkind 

Enumeration designating the types of tokens a string will be parsed into 

This page hrs been automrtiultj pcwmed with DOC++ 
DOC++ is 0 1 9 9 5  by b land  Wunderling 57 

Makc &)lie, 





36 converthosstring 

Sstring convert -t o s s t  ring ( A a  (Ss tring) & array) r 36 
Concatenates an Array of Sstrings to a single sstring 

T h i  page has been automaticalb gcmrated with DOC++ 
DOC++ is @ 1995 by Roland Wunderliw 59 

Malm 7 k k l e r  



37 infix-to-postfix 

boo1 infix-to-postfix (const A-a(Sstring)& infix, Ex- 

pression-operators& exp-ops , 
Aa( Sstring) & postfix) 

Converts an array of tokens in in jx  order to post& order using the provided 
Expression-operators object to determine operators and precedences 

Converts an array of tokens in infix order to  postfix order using the provided 

The Expression-operator object contains a registry of operator Sstrings and 

Any token not recognized by the Expressionaperator is-operator() mem- 
ber function is assumed to  be an operand. The left/right () parenthesis are 
recognized. 

ExpressionBperators object to  determine operators and precedences. 

their associated precedence level. 

Thi. p g e  has been automatidly gcneratcd with DOC+i 

DOC++ is 0 1 9 9 5  by Roland Wvnderling 
Makc Zckler 

60 



38 infixstring-to-postfix 

38 

boo1 infixstring-to-postfix (const Sstring& inp, Expres- 

sion-operators& exp-ops, r A a (  Sstring) & postfix) 

Conwerts a single infix Sstring to an array of post@ tokens using the provided 
Expression-operators object to determine operators and precedences 

Converts a single infix Sstring to  an array of postfix tokens using the provided 
Expressionaperators object to  determine operators and precedences. 

their associated precedence level. 
The Expression-operator object contains a registry of operator Sstrings and 

Any token not recognized by the Expression-operator is-operator() mem- 
ber function is assumed to  be an operand. The left/right () parenthesis are 
recognized. 

Thh page hrs brrn automatically serrratrd with DOC++ 

DOC++ is @1W5 Roland Wundcrlin. 
Malt. &Idcr 

61 



39 infix string-to-postfix 

boo1 infixstring-to-postfix (const Sstring& inp, Expres- 

sion-operators& exp-ops, 

Sstring& postfix) 

Converts a single infix Sstring to  a postjix Sstring using the provided 
Expression-operators object to  determine operators and precedences 

Converts a single infix Sstring to a postfix Sstring using the provided Ex- 

The Expressionaperator object contains a registry of operator Sstrings and 

pressionaperators object to determine operators and precedences. 

their associated precedence level. 

Any token not recognized by the Expression-operator is-operator() mem- 
ber function is assumed to be an operand. The leftlright () parenthesis are 
recognized. 

T h i  page hn been autorn&icJly gcneratedvith DOC+f 

DOC++ is @ 1995 bland Wundciling 
Makc Z k l n  

62 



40 SPECLESBLKSZ 

const size-t SPECIES BLK-SZ I 
A t  the moment we will hardura're the SPECIES-SIZE and SPECIES-MASK 

here 

At the moment we will hardwire the SPECIESSIZE and SPECIESNASK here. 
The proper way is to call the ReferenceJcArray of the local-data of a Species 
but this leads to a Local-Species circular depandancy. If the Array class or 
Species changes their MASK usage the following should be updated. There is 
an assert() test in the Species constructor to enforce this. 

63 



41 Local 

41 

class Local 

Local prowides storage space fo r  an Attribute,'s local data and provides Q 

pointer back to the Entity who's data it holds so the Species it belongs to can 
find all of the Entitys it has 

Public Members 
inline Local () Default constructor. 

inline Local (Entity *ent) 
Constructs a Local filling in the 
provided Entity that owns this Lo- 
cal 

inline void 
entity (Entity * ent) 

Sets the Entity that owns this Lo- 
cal. 

inline Entity* 
entity () Returns the entity that owns this 

Local. 

inline Species* 
species () Returns a pointer to  the Species 

this Local belongs to 

Equals operator 

Relocate the current Local to the 
specified new-location 

Local& operator= [const Local&) 

void relocate (Local *newlocation) 

41.2 inline "Local () Default destructor . . . . . . . . . . . . . . 65 

41.2 

inline "Local () 

Default destructor 

This page has been autorniticalb gencratcd with DOC+i 

DOC++ h 01995 by Roland WundeAnp 
Ydtc Grklrr 

64 



41 Local 

Default destructor. The destructor does nothing and is intentionally non-virtual. 

Thb page has k e n  aulomatically gcncratcd with DOC++ 

DOC++ is @ 1995 by Roland Wvnderling 65 
Malt. Z k k l t r  



42 Outerlimits 

I 42 I 
class Outerlimits 

Features common to outer surface/outer layer of a processor. This is convenience 
Attribute that can be added to Entities. 

T h i  p+gc has been automatically senerated with DOC++ 

DOC++ is @ 1995 &land Wundcrliw 
Make &Ucr  

66 



43 Attinfo 

class Att info r 43 

The A t t i n f o  class is a helper class that holds Attribute specific infomation 
relative to a particular Species 

Protected Members 
friend class 

Species Allow Species as a friend class for 
convenient access to all of the pro- 
tected data items 

Pointer to either a root clone or 
an obj-??? Attribute 

Attribute* orig 

Attribute* ours 

Attinfo* next 

Pointer to pur Species specific 
copy of an Attribute. 

Pointer to the next Att-info for 
Attributes an id in common 

Gid basegid Holds The Species specific begin- 

size-t attlocalsize Holds the total local byte size of 

size-t offset Holds the number of bytes oflset 
from the beginning of the Local 
data that this Attribute’s data be- 
gins at 

size-t nextatt-offset Offset from beginning of Local data 
where the next attribute begins its 
data 

ning index of the global id. 

this attribute 

Attjnfo () Default constructor 

Attinfo (Attribute *or& Attribute *ours-, 
Attinfo *next, Gid base-gid, 
size-t size, size-t offset-, 
size-t nextatt-offset-) 

Constructs an Att-info with given 
data. 

Attinfo& operator= (const Attinfo& rhs) 
Equals opemtor 

43.1 virtual -Attjnfo () Default destructor . . . . . . . . . . . . . . 68 

This p1sc has ken automatidly gemrated with DOC++ 

DOC++ is @ I995 by Roland Wundding 
Make Z c k l c r  

~ 

67 



43 At t  info 

- 43.1 1 

virtual -Attinfo () 

Default destructor 

Default destructor. 
pointer. 

Will delete all Attinfo objects pointed to  by the next 

Thh page has brrn automrticalb gcneritcd with DOC++ 
DOC++ i s  019% by Roland Wvndcrling 68 

Mdte Z c k l e r  



44 Speciesinfo 

class Speciesinfo r 44 

The Species-info class is  0 helper class to  Species that holds Species - Species 
memory relocation information 

Public Members 
Speciesinfo () Default constructor. 

Speciesinfo (const A_a(size-t)& our-off, 
const A_a(size-t)& their-off, 
const AA(size-t)& segsizes-) 

Constv-ucts a Specaesinfo object 
given our their oflsets and mem- 
ory segment sizes 

Default Copy constructor. 
Speciesinfo (const SpeciesinfoJz rhs) 

Speciesinfdz 
operator= (const Speciesinfo& rhs) 

"Speciesjnfo () Default Destructor. 

Equals operator. 

Protected Members 
A a  (size-t) Army of offsets into our Local 

d0ta 

A a  (size-t) A r m y  of offsets into the Species 
we are copying data our Local data 
from 
Array of memo y segment sizes A a  (size-t) 

T h i  p a ~ e  has bccn auforn~tically acnerated with DOC++ 

DOC++ is  01995 by b l a n d  Wunderlin~ 69 
Maltc Liichler 



45 Species 

45 

class Species 

Class Species manages a collection of Entity Locals (local data for an Entity) 
that each have an identical set of Attributes 

Public Members 
Species (const Sa(Attribute*)& attargs) 

Constructs a Species given a set of 
Attributes that define the Species 

inline Local* 
insert (Entity* entity) 

Insert a new Local into the local 
data array and initialize the local 
with the Entity which owns it 

inline Local* 
insert (Entity* entity, Local* oldlocal, 

Species* oldspecies) 
Insert a new Local into local data 
array from an another Species 

45.10 Speciesinfo* 
makespecies jnfo (Species* oldspecies) 

Create and fill a new Species info 
fo r  moving data from that Species 
to this Species .................. 74 

45.11 inline Attribute* 
operator) (Attribute * reqat t )  const 

Returns the our Species specific 
Attribute for  the given Attribute 
pointer i f  one exists ............ 74 

45.12 inline Attribute* 
operator) (const int reqid) const 

Returns the our Species specific 
Attribute f o r  the given Attribute id 
af one exists .................... 74 

inline size-t 

Thi. page h c  bccn automatically gencraid with DOC++ 

DOC++ is @ 1995 by Roland Wvndcrling 70 
Make &klcr 



45 Species 

commdefiningsize () const 
Returns the local data size of 
data that has been tagged as 
comm-defining f o r  this Species 

inline void 
commdefiningkids (Aa(int)& kids) 

Fills in an army of the Attribute 
id’s that are comm-defining for 
this Species 

inline size-t 
localsize () const Returns the local data size for this 

(Attribute *) () const 

Species. 

Returns an array of the original 
Attributes used to construct this 
Species 

Returns a copy of the Species spe- 
cific Away of Attributes 

inline S a  

inline A a  (Attribute *) () const 

static inline Species* 
clone (Sa(Attribute*)& args) 

Returns a pointer to a cloned 
Species having the given set of At -  
tributes 

static inline Species* 
clone (Sa(int)& args) 

Returns a pointer to a cloned 
Species having the given set of At-  
tributes 

static inline void 
allspecies (Aa(Species *)&am) 

Falls an array of pointers to all 
Species currently in existance 

45.13 void inline 
allatts (int id, Aa(Attribute *)& a t t l i t )  

Fills a list of all the Attributes of a 
given id contained in this Species 

75 
inline Index 

entity-count () Returns the total number of Enti- 
ties that belong to  this species 

inline Entity* 

This page l u s  been rvtornaticrlly Benerated with DOC++ 

DOC++ is 019% by 5 i m d  Wundcrting 
Mikc Zchlcr 

71 



45 Species 

entity (const Index i) 
Returns the i’th Entity for this 
Species 

inline void 
remove (Local *old) 

Removes an Entity’s local data 

Produces a full backup of all Lo- 
cal-data for this Species 

inline void 
backup () 

inline void 
swap-with-backup () 

Swaps the current Species data 
with the backup copy 

inline void 
removebackup () 

Removes the backup copy of this 
Species 

Locks down the Species so no in- 
sertions, removal, or  relocations 
can occur ....................... 75 

45.14 inline void 
lock () 

45.15 inline void 
unJock () Unlocks the Species so insertions, 

removals, and relocations can oc- 
cur ............................ 75 

inline bool 
commspecies () Returns boolean true i f  this Species 

has either a Ghost o r  an Exists on 
Attribute 

i n l i e  bool 
ghost 0 Returns boolean true if this Species 

has a Ghost Attribute 

Returns boolean true i f  this Species 
has a Exists-on Attribute 

inline bool 
exists-on () 

inline Gid gid (Local *local, int attid) 
Returns the Gad for the given Lo- 
cal’s Attribute i d  

45.16 inline Gid gid (Local *local, Attribute* att) 

DOC++ is 0 1995 by Wand Wundcrlin. 
Makc &kln 

~ 

72 



45 Species 

Returns the Gad for the given Lo- 
cal's Attribute pointer .......... 76 

inline Species* 
addatts (Sa(Attribute *)& newatts) 

Returns a pointer to the Species 
that has the given additional At- 
tributes 

inline Species* 
removeatts (Sa(Attribute *)& oldatts) 

Returns a pointer to  the Species 
that has the given Attributes re- 
moved 

void report () Prints out a report for this 
Species. 

-Species () Default Destructor 

Protected Members 
inline void 

speciesrelocate (size-t new-loc, size-t oldloc, 
const Speciesinfo& speciesinfo) 
Copies data from old location to  
new location using the provided 
Species-info object 

45.8 static void 
updateattsfhreshold (int att-threshold) 

Updates all att-idx-arrs to  correct 
size ............................ 76 

Assigns a base-gad for a given A t -  
tribute id ....................... 76 

45.9 void assign-basegid (int id, Gid base-gid-) 

Class Species manages a collection of Entity Locals (local data for an Entity) 
that each have an identical set of Attributes. Each Entity then has the same 
amount of data associated with it. Species class also helps Entity - Attribute 
relationships that are common to this particular Species. 

45.10 

Speciesinfo* make-speciesinfo (Species* oldspecies) 

Thb page has been autornatiulb generated with DOC++ 

DOC++ is  @lo95 b, bland WunckrIing 
Make &hler 

73 



45 Species 

Create and f l l  a new Species info for  moving data from that Species to this 
Species 

Create and fill a new Species info for moving data from that Species to this 
Species. The Local data for each attribute with identical kind ids is copyied 
when an Entity moves from one Species to  another. If kind ids are different but 
type ids are the same then we copy data only if the atmost-one() constraint is 
set true for the Attribute under consideration. Of special note is the possibility 
of data changing sizes even if the typeid is the same. If this is the case only 
the minimum of the two data sizes is copyied (from the beginning data offset). 
It is the user’s responsibility to  fill in any remaining data and ensure that any 
desired data to  be copied is resides at the beginning data space. 

45.11 

inline Attribute* operator) (Attribute * req-att) const 

Returns the our Species specific Attribute for  the given Attribute pointer if one 
exists 

Returns the our Species specific Attribute for the given Attribute pointer if one 
exists. Null is returned if non exists. 

inline Attribute* operator) (const int reqid) const I 
Returns the our Species specific Attribute for  the given Attribute i d  i f  one exists 

Returns the our Species specific Attribute for the given Attribute id if one exists. 
Null is returned if none exists. 

~ 

Ths pag.e has been rutomatically gcneratd wth DOC++ 

DOC++ IS 0 1 9 9 5  by 74 Roland Wvndeding 
Malte & k k r  



45 Species 

void inline a l l a t t s  (int id, Aa(Attribute *)& att l ist)  
- 

Fills a list of all the Attributes of a given id contained in this Species. The 
Attribute pointers are pointers to  Species specific copyies. 

45.14 

inline void lock () 

Locks down the Species so no insertions, removal, or relocations can occur 

Locks down the Species so no insertions, removal, or relocations can occur. 
This lock is not checked. The user has agreed to  not call insert, remove, or 
relocate functions while the lock is in place. Performance issues prevent the 
"real" locking down if the Species. Modifing the Species while locked down will, 
in general, only be detected in DEBUG mode. 

45.15 

inline void unJock () 

Unlocks the Species so insertions, removals, and relocations can occur 

Unlocks the Species so insertions, removals, and relocations can occur. The 
freelist automatic garbagezollection is turned on and f r e e l i t  emptied at this 
time. 

Thk p g e  )us been automatically .errrated with DOC++ 

DOC++ is @ 1995 Roland Wvnderling 
Make ZKhler 

75 



45 Species 

static void up dat e a t  t s -t hreshold (int att-threshold) 

45.16 

inline Gid gid (Local "local, Attribute* att) 

Returns the Gid for the given Local's Attribute pointer 

- 

Returns the Gid for the given Local's Attribute pointer. The typeid is used t o  
determine exact Attribute. 

Updates all attidx-arrs to  correct size. This function is called by Attribute when 
the number of Attributes has grown beyond some threshold. 

45.9 

void assign-basesid (int id, Gid basezid-) 

Assigns a base& for a given Attribute id 

Assigns a basegid for a given Attribute id. This base Gid is used to calculate 
a Local's gid for a given attribute. Calling this member function locks down 
the Species. The user agrees to  not insert, remove or relocate any Local data 
because this would invalidate the gid calculations. 

ThL page h n  been automatically Bcrrratcd with DOC++ 

DOC++ is @ 1995 by Roland Wunderling 
Makc &klar 



Class Graph 

Class Graph 

.............................................. 4 

....................................... 5 

I Atdata I ............................................ 7 

....................................... 9 

Localdata ................................ 15 

................................ 16 

Commondata ................................ 14 

.............................................. 17 

.............................................. 18 

77 
T h i  p’sc ha. bccn wtomaticalb gcmratcd with DOC++ 

DOC++ is 0 1 9 %  by Rolmd Wunderling 
Malt. Zi.cklrr 



Class Graph 

. 22 I Expressionsperators I 

i-2al-1 

.............................................. 28 

.............................................. 39 

.............................................. 41 

.............................................. 42 

.............................................. 43 

.......................................... 44 

.............................................. 64 

.............................................. 67 

78 
The (ugc ha. been amomaticalb, generated with DOC++ 

DOC++ n Ell995 b Roland Wvndcrling 
Mahe Ziichlcr 



Class Graph 

I Species I 

.............................................. 69 

70 .............................................. 

Thb page has b e n  autornaticalb gcnerat,t.d with DOC++ 

DOC++ is 0 1 9 %  Roland Wunderling 79 
Makc Zkkler  



Contents 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Boundary-condition ...................................... 3 
Truncation-boundary ..................................... 4 

Absorbing-boundaryxondition ............................ 5 
Perfect -electrical-conductor . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . 6 
Cell ...................................................... 7 
Edge ..................................................... 8 
Face ...................................................... 9 
Geometry ................................................ 10 
Dual ..................................................... 11 
Mesh.H .................................................. 12 

Tag-toatts - The Tag-toatts class is  a decorator class for 
Mesh-reader classes ...................................... 
Meshposition-type - W e  don’t want to  templatize here but 
we want to abstract it anyway .. . . . .. .. . ... . . .... . . . . . .. .. 25 
Cartesian-position - Fills ret with a pointer to  a valid Vector 
position for Cartesian Node Attributes . . .. .. .... ..... . . . . . 26 
Node ..................................................... 27 

19 

processorallocator - This global function distributes the 
given number of processors accross each of the parts . . . . . . 
block-partitioner - The global block-partioner function 
takes an  (I ,J ,K)  sized block and partitions it the provided 
number of blocks .......................................... 
Position - The typedef below encapsulates type of ’,signed 
index” as a position in a virtual array that may begin with 
a negative oflset , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
S-block - S-block class is  a base class just  here for possi- 
ble future expansion of specialized 1’2’3 D structured mesh 
types .................... ................................... 
S-block-Sd - The S-blocL3d class encapsulates much of the 
bookkeeping involved with structured 3- D army calculations 
19.3 operator() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.4 operator() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.5 operator() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.6 operator() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . 

28 

29 

30 

31 

32 
36 
36 
36 
37 

Cfen-block - Cfen-block class takes care of structured posi- 
tion bookkeeping f o r  Cell/Face/Edge/Node (CFEN) Entities 38 

T h i  page ha. been amom&Jly gerrrated with DOC++ 

DOC++ ie @ 1995 by Roland Wunderling 
Make &Mer 

1 



Contents 

21 

22 
23 

24 
25 

26 

27 
28 

29 

Smesh - S-mesh class is  a specialization of the Mesh class 
that handles the construction of a homogeneous Structured 
mesh part into the Entitg container ....................... 
STD-CELLSH- - Std-cells ............................. 
Std-cells - 
The Std-cells is a helper class for various classes Derived 
from the Mesh class ...................................... 
SOLVERII- - Solver ................................... 
Solver - 
The Solver class is  the base class for all the solvers ....... 
Topology ................................................. 
USMESHH- - Us-mesh ............................... 
Usmesh - Us-mesh class i s  a specialization of the Mesh 
class that handles the construction of a volumetric homoge- 
neous Unstructured mesh part into the Entity container ... 
Tiger - The Tiger Class manages the construction and ap- 
plication of Mesh and Solver objects at a high level ....... 
Class Graph .............................................. 

44 

46 

47 

49 

50 

53 

56 

57 

63 

66 

T h i  page has btcn automatically generated with DOC++ 
DOC++ i s  0 1 9 9 5  by Roland Wundcrling 2 

Mahe &Her 



1 Boundaryxondition 

1 

class Boundary-condit ion 

Features common to boundary conditions. 

The page ha. been autornaticrlb s ~ n c r a l d  with DOC++ 

DOC++ i s  @ 1995 by Roland Wunderliw 3 
Mahe L k l c r  



2 Truncat ion-boundary 

class Truncation-boundary r2 
Names 

inline void 
truncationjd (int truncid) 

Fills in a truncation-id for this At- 
tribute. 

inline int truncationjd () Returns a copy of the Truncation 
id for this Attrkbute. 

Features common to the truncation of the problem space. 

This pase has been rutarnatiratb senerated with DOC++ 

DOC++ is 0 1 9 9 5  by 4 Roland Wvndcrling 
Maltc Zbchlcr 



3 Absorbing-boundary xondit ion 

Features common to the Absorbing boundary conditions. For now this is set as 
a Truncation boundary but there are Absorbing boundary conditions that are 
not truncation boundaries in the strictest sense of the word. 

The p ~ g c  has bccn automatically sencrated with DOC++ 
c 
3 



4 Perfect -eiectrical-conductor 

class Perfect -elect rical-conductor 
J 



5 Cell 

class Cell 
- 

Thm page hrr brrn automatically generated with DOC++ 

DOC++ is @ 1995 by Roland Wvndcrling 7 
Make t ickler  



6 Edge 

r6 1 
class Edge 

Features common to Edges 

I 



7 Face 

7 

class Face 

Features common to Faces 

9 



8 Geometry 

class Geometry 
& 

Thi. p s c  has been rutwnitically sencrated with DOC++ 
DOC++ is 0 19% b %land Wundcrling 10 

Makc Zirckler 



9 Dual 

9 

class Dual 

Tag that an element is a member of the dual mesh. 

This p a ~ e  hn been automatically .errrated with DOC+i 

DOC++ is 0 1 9 9 5  by Roland Wunderlin. 
Make Z k l e r  



10 Mesh.H 

10 

Mesh.H 

Names 
10.1 extern Mesh 

objMesh Mesh really should be a abstract 
base class . . . . . . . . . . . . . . . . . . . .. . 12 

This file just defines the Mesh class, which is the highest level abstraction 
in the Tiger purview. Above here, it’s all physics (for the time being). 

extern Mesh objmesh 

Mesh really should be a abstract base class 

Names 
void (*orderlist) (A-a(int)&) 

Function to use to order our list of 
neighbors in global-build() 

boo1 initialized- Boolean j a g  signaling whether ini- 
tialize() member f inction has been 
called 

static int num-parts- Holds the number of Mesh parts 

static Entity-container <Mesh-entity> 

that constitute the entire Mesh 

ec This Entity Container holds all 
the Mesh Entities used by  this pro- 
cessor 

static Registry CSstring, Mesh *> 

12 
Thi 

DOC++ is 0 1 9 9 5  by 

has been autornalically g~nerated with DOC++ 

Roland Wundevling 
Malte & k k r  



10 Mesh.H 

mesh-typesreg- Registry with the key being the De- 
rived Class Sstring name and the 
Data being a pointer to the c o m -  
sponding objDerived-Mesh-class 

The local Oct-tree f o r  this proces- 

static Oct-tree <Mesh-entity, Meshposition-type, Node, TagType> 
g-oct The global Octdree for all proces- 

static Oct-tree <Mesh-entity, Mesh-position-type, Node, TagType> 
oct- 

SOT 

SOTS 

static Vector <Mesh-position-type> 
lo Contains local minimum extremes 

of the Mesh 

static Vector <Meshposition-type> 
hi Contains the local maximum ex- 

tremes of the Mesh 

static Vector <Meshposition-type> 
glo Contains global minimum ex- 

trernes of the Mesh 

Contains the global maximum ex- 
tremes of the Mesh 

static A a  (Mesh *) Contains an array of pointers to 
Mesh part projects belonging to 
this Mesh 

static Vector tMeshposition-type> 
ghi 

10.1.1 virtual Mesh* 
clone (const Wring&) 

This member function serves a 
signature for Derived classes . . . 18 

Given a pointer th a Mesh part, 
this member function returns that 
part’s id number 

TagType partjd (Mesh *) 

10.1.2 Mesh () Default Constructor . . . . . . . . . . . . 15 

Mesh (const Sstring& meshpartsfile) 
Constructs a Mesh from the given 
file of Mesh parts 

10.1.3 virtual void 
initialize () Initialize the Mesh part . . . . . . . . 16 

10.1.4 void initialize-oct () Initializdzes the Oct-tree . . . . . . . . 16 

T h i  p g c  has k n  automatically gcncratd with DOC++ 

DOC++ is 01~395 by b land  Wvnderling 
Make Zirk ler  

13 



10 Mesh.H 

template <class Derived-Type> inline Mesh* 
gen-clone (const Sstring& meshfile, 

Derived-Ty pe*) 
Given Mesh type,  reader format, 
and mesh fidename Sstrings This 
member function returns a pointer 
an initialized mesh object 

Builds the Mesh into the Entity 
Container ...................... 16 

10.1.6 void geidsync () Syncs the Entities by  providing a 
unique global Entity identification 
number (geid) accross all proces- 
sors ............................ 17 

10.1.5 virtual void 
localbuild () 

10.1.7 inline boo1 
geidsynced () Returns boolean answering 

the question of whether the 
geid-sync() member function has 
been called ..................... 17 

10.1.8 void global-build () Converts a series of local Meshes 
for each processor into a single 
unified Mesh ................... 17 

Closes the reader file 
virtual void 

close () 

size () Returns the number of 
MeshEntities currently in the 
Mesh 

inline size-t 

inline void 
extend-bounds (const 

VectortMeshposition-type>& pos, 
Vector< Mes hposit ion-type>& lo-, 
VectortMesh-position-type>& hi-) 

Given a position, along v i th  lo 
and high extremes, this member 
function modifies the extremes if 
position is outside present bounds 

inline void 

The page has been automatically g c r r r i t d  with DOC+i 

DOC++ i s  @1995 Wbnd Wundcrling 
Makc Z k l e r  

~ 

14 



10 Mesh.H 

Mesh () 

extend-bounds (const 
VectortMeshposition-type>& pos) 

Given a position, this member 
function modifies the Mesh lo and 
ha extremes i f  position is  outside 
present bounds 

void limits (VectortMesh-positionhype>& vlo, 
Vector<Mesh-positionhype>& vhi) 

Fills in the local lo and high ex- 
tremes of Mesh 

inliie Index 
index (Mesh-entity *e) 

Returns the position index into the 
Entity-container 

void finalize () This member function calls the 
Entity-container to finalize all re- 
quired communication 

-Mesh () Default Destructor 

Mesh really should be a abstract base class. However, some compiliers need 
a little help getting everything initialized. Also, it is convenient to have the 
objhlesh for access rather than requiring the user to know the mesh type at 
this level. As compilier mature, if objhlesh is removed below then remember 
to  make the empty member functions above pure virtuals. 

Default Constructor 

Default Constructor. Sets initialization boolean to  false. The user must call 
initialize() before using this Mesh object. 

15 



10 Mesh.H 

-~ 

void initializeact () 

10.1.3 

virtual void initialize () 

virtual void local-build () r 

Initialize the Mesh part 

Initialize the Mesh part. Derived types must overload this member function. 
The nodes of the Mesh file part are read in during this initialization phase. Also, 
limits of the mesh part are determined. Mesh’s initialize does nothing, derived 
types do the work. 

Initializizes the Oct-tree. TODO: Initialization of the Oct-tree should allow 
user-defined parameters to  be passed in here. For now minimum bin size, tol- 
erance, and hash table size are hard wired to  reasonable values in this member 
function. 

Builds the Mesh into the Entity Container 

Builds the Mesh into the Entity Container. Each derived specialization of this 
class must write this function. Mesh’s local-build does nothing, derived types 
do the work. 

16 



10 Mesh.H 

Syncs the Entities by  providing a unique global Entity identification number 
(geid) accross all processors 

Syncs the Entities by providing a unique global Entity identification number 
(geid) accross all processors. In general, geid’s will not be contiguous. After 
calling this member function no totally new Entities can be created. New En- 
tities created on a given processor must have existed on some other processor 
before calling this geidsync function. 

I 10-1*7 I 
I 1 inline boo1 geidsynced () 

Returns boolean answering the question of whether the geid-sync() member 
fnnction has been called 

Returns boolean answering the question of whether the geidsynco member 
function has been called. If geidsyncedo == true then use of geids valid. 

10.1.8 

void global-build () r 
Converts a series of local Meshes for each processor into a single unified Mesh 

Converts a series of local Meshes for each processor into a single unified Mesh. 

Thh page ha. been a,u:orna:ically gcncratrd with DOC++ 

DOC++ is @lQP5 tq Roland W u n d d i g  17 
Mahc Zbcklcr 



10 Mesh.H 

10.1.1 

virtual Mesh* clone (const Sstring&) 

This member function serves a signature for Derived classes 

This member function serves a signature for Derived classes. Derived class 
must overload this function. Mesh’s clone function just returns the this pointer. 
Derived classes will do the work of actually cloning a Mesh part object. 

This p g c  has been automatically senerated with DOC++ 
DOC++ is @I995 b l a n d  Wvnderli= 18 

Malt= &hlrr 



11 Tag-t o a t  t s 

bi~e <class Reader> class Tag-toatts : public 

The Tag-to-atts class is a decorator Class for  Mesh-reader classes 

Inheritance 

Public Members 
11.5 inline Mesh-entity () Default constructor . . . . . . . . . . . . . 22 

inline void 
. up (Aa(Mesh_entity*)& ups) 

Fills the given array with the up 
pointers for this Entity 

inline void 
dn (Aa(Mesh-entity*)& dns) 

Fills the given array with the dn 
pointers for this Entity 

Returns reference to the ups for 
this Entity 

inline Mesh-entity** 
upref 0 

inline Mesh-entity** 
upref (Index& nup) 

Fills in the number of ups and re- 
turns reference to the ups 

inline Mesh-entity** 
upref (Index& nups, Index& ndns) 

Fills in the number of ups and dns 
returns and reference to the ups & 
dns 

inline Mesh-entity** 



11 Tag-t o a t  t s 

dnref () Returns a reference to the dns for 
this Entity 

inline Mesh-entity** 
dnref (Index& ndn) 

Fills in the number of dns and re- 
turns reference t o  the dns 

Adds an up to this Entity 

Adds a down to this Entity 

void add-up (Mesh-entity* toadd)  

void add-dn (Mesh-entity* toadd)  

11.6 inline void 
remove (Freelist<Ra(Mesh-entity ), 

Mesh-entity>& freelist, bool uflag, 
bool dflag) 

Removes an entity ............. 
void remove-up (Mesh-entity* tosub,  

Freeliit<Ra(Mesh-entity), 
Mesh-entity>& freeJist) 

Removes the given up from this 
Entity 

void remove-dn (Mesh-entity* tosub,  
Freelist<Ra( Mesh-entity), 
Mesh-entity>& freelist) 

Removes the given dn from this 
Entity 

relocate (Mesh-entity *e) 
11.7 inline void 

Relocates an entity to a new posi- 
tion ............................ 

inline void 
replace-up (Mesh-entity* oldaddress, 

Mesh-entity* newhdress)  
Replaces up with old address with 
the up’s new address 

inline void 
replace-dn (Mesh-entity* oldaddress, 

Mesh_entity* newaddress) 
Replaces dn with old address with 
the dn’s new address 

11.8 void report () Prints a report for this entity ... 

22 

23 

23 

DOC++ is 0 1 9 9 5  by b land  Wundoling 
Makc ZKklet 

20 



11 Tag-to-atts 

11.9 void report (int level) Report of entity’s ups and dns re- 
cursively from level on down . . . 23 

inline operator Sstring () const 
Letting Sstring know that we don’t 
want anything to do with it 

inline bool 
has-up (Mesh-entity *entity) 

Returns boolean true if any of this 
Entity’s ups is identical to the pro- 
vided Entity 

inline bool 
hasap (const S a (  Mes h-ent ity*)& entity l is t )  

Returns boolean true if the Entity 
has an up identical to any of the 
Entities in the provided list of En- 
tities 

inline bool 
hasdn (Mesh-entity *entity) 

Returns boolean true if any of this 
Entity’s dns is identical to the pro- 
vided Entity 

inline bool 
hasdn (const Sa(Mesh-entity*)& entitylist) 

11.10 inline ’Mesh-entity () 

inline void 

Returns boolean true if the Entity 
has an dn identical to any of the 
Entities in the provided list of En- 
tities 

Default Constructor . . . . . . . . . . . . 24 

nextnode (Gid& id, Vector<double>& pos) 
Reads the next node record return- 
ing the node ad and node position 

11.11 inline void 
next-cell (Gid& id, Sa(Attribute *)& ’atts, 

Aa(Gid)& nodes) 
Reads the next cell record and uses 
tagging to obtain a set of attributes 
that wall accompany the cell . . . . 24 

11.12 inline void 

21 
This page has been automatically generated with DOC++ 

DOC++ i s  0 1 9 %  bj Roland Wundcrling 
Make &kler 



11 Tag-toatts 

nextspecial (Gid& id, Sa(Attribute *)& atts, 

Reads the next special record and 
uses tagging to obtain a set of at- 
tributes that will accompany the 
special . . . . .. ... . .... ...-. . . . . . . 

Aa(Gid)& nodes) 

24 

The Tag-toatts class is a decorator class for Meshieader classes. Tag-to-atts 
abstracts the tagging of nodes, cells, and specials by converting from a Mesh-tag 
to  a set of Attributes. 

11.5 

inline Mesh-entity () 

Default constructor 

Default constructor. Intentionally does nothing 

11.6 

inline void remove (F'reelist<Ra(Mesh-entity), 

Mesh-entity>& freelist, bool uflag, 

bool dflag) 

Removes an entity 

Removes an entity. Passes a freelist along so everyone called can add to list all 
other Entities that should now be removed as a result of this Entity's removal. 

Thb p g c  has brrn automatically generated with DOC++ 

DOC++ i s  @ 1995 b 22 b l m d  Wun&rling 
Make Zicklcr 



11 Tag-toat ts 

I 11.7 I 
inline void relocate (Mesh-entity *e) 

Relocates an entity t o  a new position 

Relocates an entity to a new position. The ups and dns for this entity are called 
and the up&dn references pointing back to this Entity are updated with new 
locat ion. 

11.8 

void report () 

Prints a report for  this entity 

Prints a report for this entity. Up, dn, and Species information are reported. 

11.9 

void report (int level) 

Report of entity’s ups and dns recursively from level on down 

Report of entity’s ups and dns recursively from level on down. No Species 
specific information is provided. 

11.10 

inline -Mesh-entity () r 
Default Constructor 

23 



11 Tag-t o a t t s  

inline void next-cell (Gid& id, S-a(Attribute *)& atts, 

A_a(Gid)& nodes) 

Default Constructor. This destructor is intentionally not virtual. Derived 
types are also meant to  have non-virtual member functions and destructors. 

- 
Reads the next cell record and uses tagging to obtaan a set of attributes that 

will accompany the cell 

Reads the next cell record and uses tagging to  obtain a set of attributes that 
will accompany the cell. Cells are defined by their nodes. 

11.12 

inline void nextspecial (Gid& id, S_a(Attribute *)& 

atts, Aa(Gid)& nodes) 
r 
Reads the next special record and uses tagging to obtain a set of attributes that 

will accompany the special 

Reads the next special record and uses tagging to obtain a set of at- 
tributes that will accompany the special. Specials are defined by their nodes. 

T h i  page has b e n  automaticalk, p m a t c d  with DOC++ 
DOC++ i s  0 1 9 9 5  ty Roland Wunderlinp 24 

Make Zkklcr  



12 Mesh-position-type 

12 

typedef double Mesh-position-type 

We don’t want to templatize here but we want to abstract it anyway 

We don’t want to templatize here but we want to abstract it anyway. Perhaps 
this belongs in Uti1ities.H 



13 Cartesian-position 

13 

inline void Cartesian-position (Entity *ent, Attribute 

"att, void "ret) 

Fills ret with a pointer to a valid Vector position for Cartesian Node Attributes 

26 



14 Node 

Names 
void pos (Mesh-entity *e, 

Vector<Meshposition-type>& v) 
Fills in a position Vector for  a 
given Mesh-entity 

Vector <Mesh-position-type> 
pos (Mesh-entity *e) const 

Returns a copy of the position f o r  
given entity. 

posref (Mesh-entity *e) const 
const Vector <Meshposition-type> & 

Returns a reference to position 
data for  a given entity. 

void pos (Mesh-entity *e, 
const Vector<Meshposition-type>& v) 

Fills a const reference to  position 
data 

void pos (Mesh-entity *e, 
Vector<Meshposition-type>*& v) 

Fills a pointer to  position data 

Sets the tag for this Attribute 

Returns a copy of the tag for this 
attribute 

void tag (const TagType& t) 

TagType tag 0 

void mesh-part file (const Sstring& meshfile) 
Sets the mesh-part-file for this At-  
tribute. 

meshpartfile () Returns a copy of the mesh part Sstring 

void Node: :cartesianpos (Mesh-entity *, Vec- 

filename for this attribute 

tor<Mesh-position-type>*) 
Required for  calling index function 
of obj-Mesh 

Features common to Nodes 

27 
Thm *KC has been automatically sencrated with DOC++ 

DOC++ is @ 1995 by Roland Wundcrling 
Make Z k l c r  



15 processorallocator 

15 

void processor-allocator (int num-procs, const 

A-a(double)& weighted-totals, 

A a  ( A a  (int ) ) & part -toproc, 

A-a(Aa(int))& proc-to-part) 
I 

This global function distributes the given number of processors accross each of 
the parts 

This global function distributes the given number of processors accross each of 
the parts. The implementation is "reasonable" but not optimal. 



16 block-part itioner 

void block-partitioner (int num-blocks, const Vec- 

tor<Ubint>& orig-block, const 
Vector<Ubint>& orig-offsets, 

A -a (Vec t or< U bin t >) & 

blockstarts, 

A_a(Vector< Ubint >) & 

blocksizes) 

The global block-partioner function takes an (I, J,K) sized block and partitions 
it the provided number of blocks 

The global blockpartioner function takes an (I,J,K) sized block and partitions 
it the provided number of blocks. The implemention is simple and can certainly 
be improved upon. TODO: write an optimization procedure that better load 
balances taking into account minimizing surface area and load balancing. The 
algorithm below emphasizes the minimization of surface area rather than trying 
to  achieve perfect load balancing. This, in general, seems to  be a good thing to 
do. In practice the load imbalance is +/- < 2 percent for the algorithm below. 
Even a slight increase in surface areas would seem to make things worse. But 
as always this needs to  be versed. 

29 



17 Posit ion 

typedef Sbint Position r it 
The typedef below encapsulates type of ”signed index’’ as a position in a virtual 

a m y  that may begin m-th a negative offset 

The plgc h a m  been automatically gemrated with DOC++ 

DOC++ is 0 1 9 9 5  by %land Wunderling 
Make Z i r k k r  

30 



18 S-block 

18 

class S-block 

S-block class as a base class just here for possible future expansion of 
specialized 1,2,3 D structured mesh types 

Inheritance 



19 S-block3d 

class S-blockSd : public S-block r l9 
The S-block-3d class encapsulates much of the bookkeeping involved with 

structured 3 - 0  array calculations 

Inheritance 

7 18 - 

Public Members 
19.2 S-blockJd () Default constructor . . . . . . . . . . . . . 36 

S-blockJd (Position off, Index i, Index j, Index k, 
Index bi, Index bj, Index bk, boo1 O S )  

Constructs a block given beginning 
offset the number of cells in each 
direction, the bounda y flags f o r  
each direction, and a bool flag 
specifing whether or not the outer 
surface is  to be included in (i, j ,  k) 
position calculations 

S-blockSd (Position off, Vector<Index>& n, 
Vector<Index>& bn, bool os) 

Constructs a block given beginning 
offset, vector for cell counts, vec- 
tor for the boundary flags, and a 
bool flag specifing whether or not 
the outer surface is to be included 
in (i, j ,  k)  position calculations 

void initialize (Position off, VectortIndex>& n, 
Vector<Index>& bn, bool os) 

Converts vector (i, j ,  k )  cell count 
d bool flags to index based calls 

initialize (Position o f f ,  Index i, Index j, Index k, 
Index bi, Index bj, Index bk, bool os) 

void 

Thi. p s e  has brrn automatically generated with DOC+i 

DOC++ is @ 1995 %land Wundcrlir. 
Make Zkkler  

32 



19 S-blockSd 

Sets up a 3 0  block of elements for 
position and interior/exterior/ ex- 
cluded queries 

19.3 inline bool operator() (Index i, Index j, Index k, 
Position& n) 

........................ 
void assert-bounds (Index i, Index j ,  Index k) 

Asserts (i, j ,  k)  bounds 
mm.mum valid indices 

inline bool 
excluded (Index i, Index j ,  Index k) 

. ...... 36 

are <= 

Bool test whether world coordanate 
(i, j ,  k )  is to be excluded and so 
no number allocated in the virtual 
position array 

inline bool 
interior (Index i, 

inline Position& 
offset () 

inline Index 
size () 

inline Position 
past-end () 

Index j, Index k) 
Bool test whether world coordinate 
(i, j ,  k )  is in the interior of this 
block 

Returns the beginning oflset Posi- 
tion number for this block of num- 
bers 

Return the total number of ele- 
ments in this block taking into ac- 
count outer surface and boundary 
f k P  

Return the next available Position 
number after the end of this block 

inline void 
cells (Index& i, Index& j, Index& k) 

Returns the number of cells in (2, 

j ,  k) f o r  this block 
inline void 

cells (Vector<Index>& v) 
Returns the number of cells in vec- 
tor v for this block 

inline void operator() (Position n, VectortIndex>& v) . . . . . . . . 19.4 36 

Thb mse has k n  rvtarnitidlr gemratcd with DOC+t 

DOC++ is 0 1 9 %  Roland Wvnderling 
Make Ziichlcr 

33 



19 S-blockSd 

19.5 inline Position 
operator() (Index i, Index j, Index k) .  . . . . . . . . . . . . 36 

19.6 inline bool operator() (const Vector<Index>& v, Position& n) 37 

inline bool 
excluded (const Vector<Index>& v) 

Returns true of Vector (a, j ,  k)  is 
excluded from the 3-D world coor- 
dinate space 

inline bool 
interior (const Vector<Index>& v) 

Returns true of Vector (i, j ,  k) is  
an interior entry in the 3-0  world 
coordinate space 

inline bool 
interior (Position n) 

Returns true of 1-D world coodi- 
nate index n is an interior entry 
in the 3-0 world coordinate space 

inline bool 
exterior (const Vector<Index>& v) 

Returns true of Vector (a,  j ,  k) is 
an exterior entry in the 3-D world 
coordinate space 

inline bool 
exterior (Index i, Index j ,  Index k) 

Returns true of Vector (i, j ,  k) is  
an exterior entry in the 3-0 world 
coordinate space 

Protected Members 
friend class 

Cfen-block Allow Cfen-block to be a b e n d  
class 

inline Position 
t o n  (Index i, Index j, Index k) 

Maps (i, j ,  k) to a single number n 
(i, j ,  k) can not be excluded based 
on Jags set for this block 

19.1 inline Vector <Index> 

34 



19 S-block3d 

to-v (Position n) Maps number n to  (it j, k;l vector 

37 

The S-blockSd class encapsulates much of the bookkeeping involved with 
structured 3-D array calculations. This class is a helper class to Cfen-block. 

Manages numbers meant to  be position numbers in a virtual block of Entities. 

Interior: Having (ij,k) neighbors that are managed by this block (truely 
structured) 

Exterior: On outer surface. These are required for structured indexing but 
they themselves do not have all their nearest neighbors being (interor/exterior). 

Excluded: If the outer surface flag is not set then the outer surface is excluded 
from numbers managed by this block. 

If the outersurface flag is not set then the usual exterior numbers become 

Numbers can be: 

excluded and the outer surface interior numbers become exterior. 

Given a block of structured cells in 3-D space. The number of nodes, edges, 
faces, cells are all different. This usually leads to different counting formulas 
for each. Questions of whether a given node/edge/face/cell number is on the 
interior or exterior of a block also leads to  different formulas for each situation. 
Things usually become tedious when finding stencils near boundarys etc ... The 
indexing formulas are also dependent on whether or not the outer surface is to  
be included or not. 

It is the intent of this class to  provide an interface that handles mapping 3-D 
local coordinate (ij,k) space to a world 1-D coordinate space and visa versa. 
Through the use of boundary and outer surface flags this class unifies the 1D-3D 
mapping formulas for nodes/edges/faces/cells indexing calculations. 

Input: 

offset 

cel ls  in x, y ,  z 

boundary flags f o r  x , y  z direct ions of type Index (not bool): 
0 means excluded 1 means included 

bool outer-surf ace f l a g :  true means include outersurf ace 

This p g c  ha. bccn automatiully gcncratd with DOC++ 

DOC++ 6, Q l P Q 5  by Roland Wvnderling 
Make &klcr 

35 



19 S-blockSd 

Default constructor 

Default constructor. The initialize member function must be called before using 
this object when this destructor is used. 

19.3 

inline boo1 operator() (Index i, Index j ,  Index k, Position& 

n) 

Operator(ij,k, &n) gives the position number n in virtual block of numbers 
given 3-D world coordinate (ij,k) if interior operator() returns true else false. 

19.4 

inline void operator() (Position n, Vector<Index>& v) 

Operator (Position n, Vector v) gives the world (ij,k) coordinate number given 
1-D coordinate n/ 

19.5 

inline Position operator() (Index i, Index j ,  Index k) 

Operator(ij,k) returns 1-D world cordinate given the (i,j,k) world coordinate. 

36 
This 

DOC++ is @19% by 

has been autornatiulb gemrated with DOC++ 

Roland Wvndcrling 
Makc 25ckl.r 



19 S-blockSd 

- 19.6 

inline boo1 operator() (const Vector<Index>& v, Posi- 

tion& n) 

Operator(Vector(i,j,k)& &n) gives the 1-D world coordinate number n given 
the 3-D world (ij,k) coordinate number. Returns true if interior else false. 

inline Vector <Index> to-v (Position n) 

Maps number n to (a,j,k) vector 

Maps number n to  (ij,k) vector. n must not be an excluded number. 



20 Cfen-block 

20 

class Cfen-block 

Cfen-block class takes care of structured position bookkeeping for 
Cell/Face/Edge/Node (CFEN) Entities 

Public Members 
20.3 Cfenblock (Ra(Mesh-entity)& arr) 

Constructs Q Cfen-block given Ref- 
erenceflcdrray ............... 39 

Cfen-block class takes care of structured position bookkeeping for 

Given a reference to an ReferenceJCarray of Mesh-entities, and the num- 
ber of cells in a (i, j ,  k) block, this class manages the Index positions for CFEN 
Entities. 

Cell/Face/Edge/Node (CFEN) Entities. 

The outer surface of a structured block can be included or excluded. 

The Cfen-block managers numbers for 8 different Entity types of a structured 
block In the arrays and enumerations the following is set up 

** 

0 no Nodes of t he  block 
1 ex X di rec ted  edges 
2 eY Y d i rec ted  edges 
3 ez 2 di rec ted  edges 
4 hx X di rec ted  faces  
5 hY Y d i rec ted  faces  
6 hz Z di rec ted  f aces  
7 ce Cel l s  of t he  block 

The 2 l e t t e r  enumerations a re  used f o r  compact array 
i n i t i a l i z a t i o n s  where it is important t o  not ice  the  
i n t i a l i z a t i o n  pa t t e rns .  The two l e t t e r s  
(no, ex, ey, ez ,  hx, hy, hz, ce) a r e  used f o r  
h i s t o r i c a l  reasons.  
t h e  FDTD community. 

Their usage is very popular i n  

Historical note: 

38 



20 Cfen-block 

There are a fair number of extra member functions provided for the user. 
These member functions are provided for user convenience. Most of the answers 
could be obtained by doing simple one line adding and subtracting. 

However, there could be many many more. For example, the ups()/dns() 

Historically the logic contained here and in S-blockSd has been distributed 
all over huge portions of various application codes. Applications often had many 
thousands lines of code devoted to  such logic because of the hundreds of special 
case formulas usually required by these applications. 

These "special case" formulas and situations are delibrately missing. The 
formulas have now been unified into a small set of member functions which use 
a series of lookup tables. 

member functions could be split into dozens and dozens of combinations. 

20.3 

Cfen-block (R-a(Mesh-entity)& arr) 

Constructs a Cfen-block given Referencexc-Array 

Constructs a Cfen-block given ReferenceDcArray. The user mush call initialize 
if this constructor is used. 

20.4 

inline Position ent-type (Position n) 

Returns a number [O-71 given a position number 

Returns a number [0-7] given a position number. Number returned: Element 
type: 0 node 1 X directed edge 2 Y directed edge 3 Z directed edge 4 X directed 
face 5 Y directed face 6 Z directed face 7 cell 

Thh p g c  has been iutomatiOlly generated with DOC++ 

DOC++ i s  @ l P %  by Roland Wunderling 
Makc Zkkle.  



20 Cfen-block 

,- 20.5 

I inline bool node-excluded (Position n) 

Returns boolean true if Position is an excluded node 

Returns boolean true if Position is an excluded node. 
n is based on numbering range 0 to  
numbering scheme used f o r  the  rest of Cfen-block. 

Note that position 
of nodes i n  block) and not the 

20.6 

inline void nodes-of-cell (Position n, A_a(Index)& 

nodes) 

Fills in the Army with 8 node positions of given cell number 

Fills in the Array with 8 node positions of given cell number. Note that the 
node position numbers are based on included "excluded" nodes. This is NOT 
the numbering scheme usually used by Cfen-block. Only node-excludedo and 
nodes-of-cell() use this convention. 

inline void up-dns (Position n, A_a(Index)& up-dn, const r 20*7 
bool up) 

Falls the ups or dns array with the positions of the nearest neighbors that are 
one higher or lower in dimensionality 

Fills the ups or dns array with the positions of the nearest neighbors that are 
one higher or lower in dimensionality. This routine assumes position is in the 
interior so that structured position offsets are valid The boolean flag is true if 
ups is desired else dns 

40 



20 Cfen-block 

20.8 

inline void ups (Position n, Aa(Index)& ups) 

Fills the ups array with the positions of the nearest neighbors that are one 
higher in dimensionality 

Fills the ups array with the positions of the nearest neighbors that are one 
higher in dimensionality. This routine assumes position is in the interior so that 
structured position offsets are valid 

20.9 

inline void dns (Position n, A_a(Index)& dns) 

Fills the dns array with the positions of the nearest nearest neighbors that are 
one lower in dimensionality 

Fills the dns array with the positions of the nearest nearest neighbors that are 
one lower in dimensionality. This routine assumes position is in the interior so 
that structured position offsets are valid 

inline void up-dns (Position n, A-a(Mesh-entity*)& 

up-dn, const boo1 up) 

Fills the ups or dns array with the positions of the nearest neighbors that are 
one higher or lower in dimensionality 

Fills the ups or dns array with the positions of the nearest neighbors that are 
one higher or lower in dimensionality. This routine assumes position is in the 
interior so that structured position offsets are valid. The boolean flag is true if 
ups is desired else dns. The ReferencelVcarray MUST be sized to contain the 
Cfen block before calling this member function. 

41 



20 Cfen-block 

20.11 

inline void ups (Position n, A-a(Mesh-entity*)& ups) 

Fills the ups array with the Mesh-entity pointers for the nearest neighbors that 
are one higher in dimensionality 

Fills the ups array with the Mesh-entity pointers for the nearest neighbors that 
are one higher in dimensionality . The ReferencerJcarray MUST be sized to 
contain the Cfen block before calling this member function. 

20.12 i 

inline void dns (Position n, A-a(Mesh-entity*)& dns) r 
Fills the dns array with the Mesh-entity pointers for  the nearest neighbors that 

are one lower in dimensionality 

Fills the dns array with the Mesh-entity pointers for the nearest neighbors that 
are one lower in dimensionality . The ReferenceNc-array MUST be sized to  
contain the Cfen block before calling this member function. 

I 20-13 1 
inline void up-dnaddress-offsets (Position n1 

Aa(SIndex)& up-dn, 

const boo1 up) 

Fills the ups or dns array with the address ofisets of the nearest neighbors that 
are one higher or lower in dimensionality 

Fills the ups or dns array with the address offsets of the nearest neighbors that 
are one higher or lower in dimensionality. This routine assumes position is in 
the interior so that structured position offsets are valid. The boolean flag is true 
if ups is desired else dns. The ReferenceNcarray MUST be sized to  contain 
the Cfen block before calling this member function. 

This page has been autarnitiolb ~ m e r a l d  with DOC++ 

DOC++ is 0 1 9 9 5  by Roland Wundcrliw 
Maltc L6chler 

42 



20 Cfen-block 

20.14 

inline void ups-address-offsets (Position n, 

Aa(SIndex)& ups) 

Fills the ups a m y  with the address offsets of the nearest neighbors that are 
one higher in dimensionality 

Fills the ups array with the address offsets of the nearest neighbors that are one 
higher in dimensionality . The ReferenceDcarray MUST be sized to  contain 
the Cfen block before calling this member function. 

20.15 

inline void dnsaddress-offsets (Position n, r A-a( SIndex)& dns) 

Fills the dns array with the address oflsets of the nearest neighbors that are 
one higher in dimensionality 

Fills the dns array with the address offsets of the nearest neighbors that are one 
higher in dimensionality . The ReferenceNcarray MUST be sized to  contain 
the Cfen block before calling this member function. 

Thm page h s  brrn automatically generated with DOC++ 

DOC++ i s  a 1 9 9 5  by bland Wvndcrliw 
Makc Z k k l e r  

43 



21 Smesh 

template <class Smeshreader> class Smesh : public r Usmesh<Smeshreader> 21 

S-mesh class is a speciadization of the Mesh class that handles the construction 
of a homogeneous Structured mesh part into the Entity container 

Inheritance 

Smesh 

Public Members 
21.1 Smesh () Default constructor ............. 45 

Smeshreader* 
reader () Returns a pointer to the reader be- 

ing used for  this mesh part 

virtual Mesh* 
clone (const %ring& meshfile) 

Returns a pointer to an Structured 
Mesh part object 

21.2 virtual void 
initialize () Initializes the Structured Mesh 

part ............................ 45 

21.3 virtual void 
local-build () Builds the Mesh part on this 

processor not communicating the 
outer surface t o  other processors 

void close () C7oses the files associated un'th this 
mesh part 

virtual "Smesh () Default destructor 

45 

44 



21 Smesh 

. virtual void initialize () 

Smesh class is a specialization of the Mesh class that handles the construc- 
tion of a homogeneous Structured mesh part into the Entity container. The 
structured mesh can be Cartesian or warped. A warped structured mesh has 
local node positions that are stored with the Node Entities. The outer surface 
of all Structured mesh parts are actually Unstructured. This allows structured 
meshes to  be stitched into a single unified mesh. 

~ 

Default constructor 

Default constructor. Registers its name in the Mesh types static registry held 
by Mesh. 

Initializes the structured Mesh part 

Initializes the Structured Mesh part. The nodes of the unstructured outer sur- 
faces of this mesh file part are determined and limits of this mesh part are 
established during this initialization phase. 

virtual void local-build () r 21-3 
Builds the Mesh part on this processor not communicating the outer surface to 

other processors 

Builds the Mesh part on this processor not communicating the outer surface to  
other processors. Both the structured and unstructured parts of this mesh part 
are constructed at this time. 

45 



22 STD-CELLSH- 

22 

#define STD-CELLSH- 

Std-cells 

Std-ce1ls.H 

Definition of the Std-cells class. 



23 Std-cells 

class Std-cells 

Public Members 
23.1 Std-cells (int cell-type = 0) 

Std-cells (const Aa(Gid)& nodes) 

Default constructor . . . . . . . . . . . . . 

Constructs 0 Std-cell object given 
array of node numbers 

48 

inliie void 
set-cell-type (const Aa(Gid)& n) 

Determines the cell type based on 
the number of non-zero nodes are 
set in the array 

inline int cellfype () Returns the cell type 

inline int nnodes () 

inline int nfaces () 

inline int n-edges () 

Returns the number of nodes for a 
given cell type 

Returns the number of faces for a 
given cell tyoe 

Returns the number of edges for a 
given cell type 

Returns the local cell node number 
given a local face number and edge 
number for given face 

Returns the local cell edge number 
given a local face number and edge 
number for given face 

inline int e-count (int f )  Returns the number edges for a 
given face number 

inline Gid nnum (int f, int e) 

inline Gid enum (int f, int e) 

The Std-cells is a helper class for various classes Derived from the Mesh class. 
Essentially, this class manages local (within a cell) numbering conventions. 



23 Std-cells 

The Std-cells file is temporarily ”hard-wired” for hexahedral, tetrahedral, 
pyramid, and prism in the .C file. 

(This is a minor issue. Other then input, the rest of the code should support 
other cell types.) 

We just need to  get the ”element.types” like functionality in here so the user 
can specify any element types they want t o  from a file rather than editing source 
code. Converting tables to  file input is very simple and was done in some earlier 
versions of TIGER. It is however on the TODO l i t .  

TODO: move tables of Std-cells to input file. 

Some of the tables can be computed from the others at reading time. (They 

Also, high order shape elements for the moment are unsupported 2 things 

are formulas based on previos input). 

are needed: 

1)Input readers  which handle high-order formats f o r  Mesh 

2)Associated length,  area, area-normal e t c  ... funct ions 
and At t r ibu te s  

I f  t h e  topology doesn’t change compared t o  lower 
elements (which seems t o  be t h e  case f o r  most physics) 
then t h e  above mentioned i t e m s  should be a l l  t h a t  is needed 
t o  support high order meshes. 
t h i s  complexity t o  t h e  above 2 places.  

The rest of Tiger a b s t r a c t s  

23.1 

Std-cells (int cell-type = 0) 

Default constructor 

Default constructor. Optional argument sets cell type for subsequent queries. 

T h i  woe has b e n  automatically gcneratcd with DOC++ 

DOC++ is @ 1995 % 48 Roland Wundcrlin. 
Make &kkr 



24 SOLVERH- 

#define SOLVERH- r 24 

So1ver.H 

Definition of the Solver class. 

49 



25 Solver 

The Solver class i s  the base class for all the solvers 

Public Members 
Solver () Default Constructor sets initial- 

Solver (const Sstring& meshpartsfile) 

ization boolean to false. 

Constructs a Solver from the given 
file of Mesh parts 

virtual void 
initialize () Initialize the Solver 

"Solver () Default Destructor. 

Protected Members 
boo1 initialized- Boolean flag signaling whether ini- 

tialize() member function has been 
called 

static A a  (Solver *) Holds an Array of pointers to 
other Solver objects that are man- 
gaged by  this Solver object 

The Solver class is the base class for all the solvers. The solver requires a 
pointer to  a fully constructed Mesh object or a Solver input filename. 

The role of this class is to manage the Solving process. Although actual 
solvers can be added to  Derived class member functions, the intended usage 
most often will be to  orgistrate the calling of other Solver packages such as 
Petsc. 

General comment: At present, this layer of the Tiger 
software is minimalistic. For nou we 
are only creating a one or test cases 
to demostrate: 

Libraries 
1) Typical usage of Mesh/E-A/Utility 

50 



25 Solver 

2 )  Proof of Concept to see how much 
bookkeeping and low level details 
can be kept hidden from this level 

Derived classes should implement the following: 

Constructor: (Given Mesh*) 
During the construction phase the Solver may adorn 
the Entities contained in a Mesh with Solver specific 
Attributes. 

Constructor: (Given solver-input-file) 
Reads in an existing Solver input file 

Initialize(): The Solver sets up Matricies required by the 
solve() routine. 

read-input-file(): Reads in an existing Solver input file 

urite-input-file(): Writes all required information out to 
disk. 

solve(): Invokes solver. This function is intended to be 
overloaded with various parameter arguments such as 
compute one time step o r  solve entire problem etc. 
The signatures well vary on the type of Solver o r  
the solver package actually called. 

Things to think about: 
........................ 

A given solver object should be able contain other solver objects. 
For example: 

A Finite-volume-solver may invoke: 
Absorbing-boundary-condition 
Near-to-far-zone 
Dsi-free-space 
Dsi-lossy-material 
Dsi-source 
Dsi-sensor 
.... 

each solver may want to use a common mesh 
Some solvers may want to use their own mesh 



25 Solver 

We may also want the output from one Solver to be the input 
to another Solver. 

For example: 
A Near-to-far-zone solver in general may want 
to use the fields a Finte-volume-solver. 

Another common situation would be for a given solver to 
call other member functions of the same solver object to 
split the overall solving process into piecies. 

This is where a high level framework could add power and 
convenience. 



26 Topology 

Names 
26.1 ATDECBEGIN (Topology, Attribute) 

Topology handles the up/dn in di- 
mensionality topology abstraction 

54 
void up (Local* loc, Aa(Mesh-entity*)& arr) 

Fill in  the array with the ups for 
the given entity 

Fill an the array with the downs for 
the given entity 

void dn (Local *loc, AA(Mesh-entity*)& am) 

Mesh-entity** 
upref (Local *loc) 

return reference to the ups for 
given entity 

upref (Local *loc, Index& s) 
Mesh-entity** 

return nurn ups and reference to 
the ups 

Mesh-entity** 
upref (Local *loc, Index& u, Index& d) 

return num ups, 
ence to the ups 

dns and refer- 

Mesh-entity** 
dnref (Local *loc) 

return reference to the dns for 
given entity 

dnref (Local *loc, Index& s) 
Mesh-entity** 

return nurn dns and reference to 
the dns 

const Index& 
num-ups () const Get the number of ups these entz- 

ties have. 

const Index& 

Thi. p g e  hrr been automatiully gcmrited with DOC+i 

DOC++ is @ 19% by Roland Wuwkrlimg 
Malle &liter 

53 



26 Topology 

num-dns () const Get the number of downs these en- 
tities have. 

26.2 if(num-dns() > O)(newloc)() 
(newloc) () Used to  fix the dns starting in the 

last up space after a local relocate 
to a Species with more ups has oc- 
cured ....... .... ....... ......... 55 

void change-up (Local * loc, Mesh-entity *toadd, 
const Index pos) 

Change the up at the given posi- 
tion to the given value. 

void change-dn ( Local * loc, Mesh-entity * toadd ,  
const Index pos) 

Change the down at the given po- 
sition to the given value. 

Tag the Topological properties of a mesh. 

26.1 

ATDECBEGIN (Topology, Attribute) 

Topology handles the up/dn an dimensionality topology abstraction 

Topology handles the up/dn in dimensionality topology abstraction. A com- 
plexity of this abstraction is the possibility of the Entity being either structured 
or unstructured. If unstructured then the up/dn information is stored in lc- 
cal data. If up/dn information is structured then we only have stored the 
offsets relative to  the given entity. In the structured case we add the offsets 
to the the given entity pounding the information into either a user provided 
Aa(Mesh-entity *) or our local storage space. 

For methods that rely heavily on mesh topological connectivity, the Topology 
member functions have a huge influence on the overall application performance. 

54 



26 Topology 

if(num-dns() > O)(newloc)() (newJoc) () 
I 26.2 I 

Used to fi. the dns starting in the last up space after a local relocate to a 
Species m'th more ups has occured 

Used to fix the dns starting in the last up space after a local relocate to a Species 
with more ups has occured. This is not thread safe. The calling function should 
lock down the Entity. 

Thm page h a s  been rvtornstiolly generated with DOC+i 

DOC++ is @I995 by Roland Wunderlir. 
Make Z r k l c r  

55 



27 USAESHH- 

27 

#define USMESHH- 

Us-mesh 

Usmesh.H 

Defines the Usmesh (Unstructured Mesh) class 

.. .. 



28 Usmesh 

I 28 1 

I tem late <class Usmeshreader> class Usmesh : public I Mes\ 

Us-mesh class is  a specialization of the Mesh class that handles the 
construction of a volumetric homogeneous Unstructured mesh part into the 

Entity container 

Inheritance 

rldi Uslnesh 

Public Members 
28.4 Usmesh () Default constructor . . . . . . . . . . . . .  60 

inline Usmeshreader* 
reader () Returns a pointer to the reader be- 

ing used for this mesh part 

open (const Sstring& fileaame, const Sstring mess) 
Opens the files associated with the 
the provided filename and initial- 
izes the reader 

void 

virtual Mesh* 
clone (const Sstring& meshfile) 

Returns a pointer to an Unstruc- 
tured Mesh part object 

Initializes the Unstructured Mesh 
part ............................ 61 

28.5 virtual void 
initialize () 

virtual void 

This p ~ e  has h e n  automatically generated with D O C t i  

DOC++ is @ 1995 by Roland Wvndcrling 
Make Zicklcr 

57 



28 Usmesh 

localbuild () Builds the Mesh part on this 
processor not communicating the 
outer surface to other processors 

28.6 Mesh-entity* 
build-cell (int, Aa(Mesh-entity*)&, Species*) 

Builds all the Entities required to 
add a cell into the Entity container 
... . . . .  . . . .  . . . .  . . .  _. . .  ........ .. 61 

inline Mesh-entity* 
find-common-up (Mesh-entity *a, Meshzntity *b) 

Fands a common up entity given 
two entities 

inline Mesh-entity* 
create-edge (Mesh-entity *nl, Mesh-entity *n2) 

Creates an edge given two node en- 
tities 

inline Mesh-entity* 
createface (A-a(Mesh-entity *)& cells-edges, 

int *edges, int num-edges) 
Creates a face given set of edge en- 
tities 

inline Mesh-entity* 
create-cell (Aa(Mesh-entity *)& faces, 

int numfaces, Species *cellspecies) 
Creates a cell given a set of face 
entities 

Sstring partnreadername () 
Returns a Sstring concatenating 
the Mesh part type name and the 
Mesh-reader type names 

Sstring meshpartfile () Returns the mesh part file used to 

void close () Closes the files associated with this 

virtual “Usmesh () Default destructor 

construct this Us-mesh object 

mesh part 

Protected Members 
28.1 Std-cells connect Holds local cell connectivity . . . . . 62 

Thm page has bccn automatiult geencratcd 4 t h  DOC++ 

DOC++ is @ 1995 by Roland Wvnderling 
Make Zkklcr  

~ 

58 



28 Usmesh 

int nodes-built Holds the number of nodes con- 
structed and inserted into Mesh’s 
Entity container 

int edges-built Holds the number of edges con- 
structed and inserted into Mesh’s 
Entity container 

int faces-built Holds the number of faces con- 
structed and inserted into Mesh’s 
Entity container 

int cellsbuilt Holds the number of cells con- 
structed and inserted into Mesh’s 
Entity container 

Usmeshreader 
reader- Holds the unstructured 

Mesh-reader object 

Holds an array of Attributes 
lists associated with common edge 
Mesh-entity currently being con- 
structed 

Holds an array of pointers to pos- 
sible Species’for the edge currently 
being constructed 

Holds an array of Attributes 
lists associated with common face 
Mesh-entity currently being con- 
structed 

Holds an array of pointers to pos- 
sible Species’for the face currentZy 
being constructed 

An Array of the original Node-id’s 
read an from the Mesh input file 

An Array of the original node gosi- 
tions read in from the Mesh input 

static int reference-count Holds a reference count of how 
many Us-mesh parts have been in- 
stanciated to date 

A a  (S_a(Attribute *)) 

A a  (Species*) 

A a  (S_a(Attribute *)) 

A a  (Species*) 

A a  (Gid) 

A a  (VectorcMesh-position-type>) 

f l e  

Thk p g r  hi been automatically gencratd with DOC++ 

DOC++ is @ 1995 Roland Wvndcrling 
Make &Mcr 

59 



28 Usmesh 

28.2 Usmesh (const Sstring& cls-name) 
Constructor that registers the 
given class name in the Mesh types 
static registry held by  Mesh . . . . . 62 

28.3 Sstring partnreadername (const Sstring& clsname) 
Returns a Sstring concatenating 
the given Mesh part type name and 
the Mesh-reader type names . . . . 62 

inliie void 
addatt (const Sstring& at tname,  

Sa(Attribute *)& att) 
Given a Sstring this member func- 
tion finds and inserts the Attribute 
into the provided Sorted array 

Sets up the Edge and Face At- 
tribute and Species arrays used in 
the Unstrctured grid construction 
process 

void edgeface-attspeciessetup () 

Usmesh class is a specialization of the Mesh class that handles the construction 
of a volumetric homogeneous Unstructured mesh part into the Entity container. 
The Usmesh can add n-faced - m-sided elements into a Mesh. However, the 
class is templated based on a Meshreader type that must know how to read 
these arbitrary cell formats. Furthermore, the class aggregates a Std-cells class 
object that must know about the local connectivity of a given cell type. So in 
order to support a new type of cell the user must add to  the Std-cells class and 
a provide or enhance a reader. 

I 28-4 I 
Us-mesh () 

Default constructor 

Default constructor. Registers its name in the Mesh types static registry held 
by Mesh. 



28 Usmesh 

virtual void initialize () 
r 4 

Initializes the Unstructured Mesh part. The nodes of the unstructured mesh 
file part are read in during this initialization phase. Also, limits of the mesh 
part are determined. 

28.6 

Mesh-entity* build-cell (int, Aa( Mesh-entity") &, 

Species*) 

Builds all the Entities required to  add a cell into the Entity container 

Builds all the Entities required to add a cell into the Entity container. Given 
a set of node ids this member function loops over every face of the cell and every 
edge of every face creating any Mesh entities that are required. The following 
is a simple outline of the procedure. 

Convert node numbers t o  Ent i t ies  
For every face  

For every edge 
If it doesn't e x i s t  

e l s e  
create edge 

f ind edge 
If face  does not e x i s t  

e l s e  

given faces  
create c e l l  

create face  

f ind-f ace 

Thi. 

DOC++ is @ 1995 by 

ha. brrn automatically gcncratcd with DOC+i 

Roland Wun&rlimg 
Mdtc Zirkler 

61 



28 Usmesh 

Holds local cell connectivity 

Holds local cell connectivity. "Local" here denotes node, edge, and face indexing 
relative to a single cell. 

28.2 

Usmesh (const Sstring& clsname) 

Constructor that registers the given class name in the Mesh types static 
registry held by Mesh 

Constructor that registers the given class name in the Mesh types static reg- 
istry held by Mesh. Only Derived classes can access this member function. 

I 28-3 I 
I I Sstring partnreader-name (const Sstring& clsname) 

Returns a Sstring concatenating the given Mesh part type name and the 
Mesh-reader type names 

Returns a Sstring concatenating the given Mesh part type name and the 
Meshreader type names. This member function can only be called by Derived 
class member functions. 

Thi. pale has been automrtically gerrratcd with DOC++ 

DOC++ is @ 1995 by 62 Roland Wvndcrling 
Make &Her 



29 Tiger 

29 

class Tiger 

The Tiger Class manages the construction and application of Mesh and Solver 
objects at a high level 

Public Members 

29.1 

29.2 

29.3 

29.4 

void initialize (int argc, char** argv) 
Loads the Attribute data base and 
Attribute map files if this is  the 
first time this member function is 
called 

Tiger (int argc, char** axgv) 

Tiger (int a.rgc, char** argv, 

Default constructor ............. 64 

const Sstring& filename) 
Loads the Attribute data base and 
Attribute map files ............. 64 

Constructs a Mesh consisting of 
the Mesh parts contained in file- 
name 

Mesh* mesh () Returns a pointer to the currently 

void geidsync () Syncs the Entities by  provtdang a 
unique global Entity identification 
number (geid) accross all proces- 
sors ............................ 65 

void mesh (const Wring& filename) 

constructed mesh 

inline boo1 
geidsynced () Returns boolean answering 

the question of whether the 
geid-sync() member function has 
been called ..................... 65 

Reads in Sources input relavent t o  
the current Mesh and Solver 

void loadsensors (const Sstring& sensorsfilenames) 

void loadsources (const Sstring& sourcesfilenames) 

63 



29 Tiger 

Reads in Sensors input relavent to 
the current Mesh and Solver 

29.5 -Tiger () Default destructor . . . . . . . . . . . . . . 65 

The Tiger Class manages the construction and application of Mesh and Solver 
objects at a high level. Various stages of the preprocessor can be called from 
this class. A typical usage would be calls from a gui or script file drivers. 

Default constructor 

Default constructor. Loads in the Attribute data base and Attribute map files. 
If this is the first Tiger object. 

Tiger (int argc, char** argv, const Sstring& filename) 

Loads the Attribute data base and Attribute map files 

Loads the Attribute data base and Attribute map files. Then constructs a Mesh 
consisting of the Mesh parts contained in filename. 

,- 29.3 i 

void geidsync () 

Syncs the Entities by prouiding a unique global Entity identification number 
(geid) accross all processors 

64 



29 Tiger 

Syncs the Entities by providing a unique global Entity identification number 
(geid) accross all processors. In general, geid’s will not be contiguous. After 
calling this member function no totally new Entities can be created. New En- 
tities created on a given processor must have existed on some other processor 
before calling this geidsync function. 

I 29-4 I I inline boo1 geidsynced () 

Returns boolean answering the question of whether the geid-sync() member 
function has been called 

Returns boolean answering the question of whether the geidsynco member 
function has been called. If geidsyncedo == true then use of geids valid. 

I 29-5 I 
“Tiger () 

Default destructor 

Default destructor. Deletes the mesh if one exists. 

Ths page has h e n  antomatically gcrrrated with DOC+i 

DOC++ is 0 1995 b Roland Wvnderling 
Malte &kkr 

65 



Class Graph 

Class Graph 

... ....... . . . . .__.  ....... . . . .  .... ....... ...... 19 

... ... .... ........ ....... .... . . . .  . . . .  ... ...... 31 

.......... ... . . . .  . . . . . . . .__.  .... . ._.. . .  32 

[ Cfen-block I 

c3 Solver 

............_. . .  .........___. ..._ . _ . _ .  . .  .... .. 38 

.. . . . . .... .... .... . . . .  . . . . ... .... .... . .. . . . . . . 47 

. . . .__. .  . .  .... ........ ....... ... . ......_.... .. 50 

... ........... . .  ......... .... ........ . . .  ...... 57 

66 
T h i  paE= b. k e n  sutomaticdly senerated with DOC++ 

DOC++ is @ 1995 by Roland Wundcrlin& 
Make &liter 



Class Graph 

k3 Smesh 

czl Tiger 

....................................... 44 

.............................................. 63 

Thh ~ g e  has k n  automatically gcnnrfed with DOC++ 

DOC++ is  @ 1995 bl Roland Wunderliw 
Make &hlcr 

67 


	What™s in Array.H -
	given type and size to its children
	given position

	HeapArray - An array located in the heap
	given posistion

	lows the size and capacity to be dynamically adjusted
	top of every block in a ReferenceJVcAway
	Block-header and its associated data
	ray of Blocks
	for a specific element
	1.8.1 operator()

	mon operations for any container

	What™s in Comm.H
	plicated topologies than just MPI-COMM- WORLD
	3.2 Comm - Comm class
	3.3 Message - Base class Message
	3.4 Send - Send buffer
	3.4.2 operator() - Bufler set-up

	3.5 Recv - Receive bufler

	Factory::initialize() spins
	least a pointer to another item

	What™s in Memory-pool.H
	with prev next pointers to create a doublely linked list
	pool
	inside the Memory-pool class
	vides memory always aligned to the requested size

	9 Memorymanager - Memory management class
	tion and guarentee exclusive access when needed
	?™ else it will be ?™staticﬂ
	?™ else


	12 Mutex - Provide a basic thread locking mechanism
	13 What™s in Oct-tree.H
	Octdata - Octdata a union of various pointer types
	trade-o$

	14 What™s in Rb-tree.H
	Rb-tree
	hundreds to billions) of data items
	usually newed

	What™s in Registry.H
	operators are based soley on the Key
	data based on a key that is stored with the data
	fie array

	tasks cumntly supported by the Retriever class
	triever class

	RunTime - Times a progmm (or anything else you desire)
	What™s in Sparsematrix.H
	Sorted-Array container that provides a few additional services
	class for holding entries in a sparse mutrix

	Sstring.H -
	types in addition to the usual string class utilities
	Sstring
	type is

	What™s in Utilities.H
	Class Graph
	Retriever
	I Alignment

	At-data-ptr - Pointer to an At-data
	At-value-ptr - Pointer to an At-value
	Attjnit - Used to initialize At-data™s for global Attributes
	clones and copies

	which are species or local
	At-value - An At-value is a basic wmpper for At-data
	At-value

	Local-data - Local-data is a special type of At-value
	At-value
	clones must inherit from this
	the problem space

	Global registry of Att-tag * to attributes lists
	attmapreader - a good old C style function!
	ENTITY-SIZE and ENTITY-MASK here
	EF(Topo1ogy)->up-ref( local u d )
	sisting of a collection of one or more Attributes
	15.4 operator()
	15.5 operator()


	Exists-on
	Ghost
	Factory - A geneml class to clone objects of a given type
	class

	Filter - This is a temporary comment for the Filter class
	has ended
	strings that name various operators
	precedences

	Const Sstring holding parenthesis chamcters
	ters

	Const Sstring holding decimal digits
	Const Sstring holding hexidecimal digits
	characters
	characters
	which can constitute a valid C++ variable name
	that can truncate a token of operator type
	exist in a given Sstring
	indifidual token can be
	string will be parsed into
	given String into a army of tokens
	single sstring
	object to determine opemtors and precedences
	dences
	ject to determine opemtors and precedences
	SPECIES-SIZE and SPECIES-MASK here
	has

	Boundary-condition
	Truncation-boundary
	Absorbing-boundaryxondition
	Perfect -electrical-conductor
	Cell
	Edge
	Face
	Geometry
	Dual
	Mesh.H
	Mesh-reader classes
	want to abstract it anyway
	position for Cartesian Node Attributes

	Node
	given number of processors accross each of the parts
	number of blocks
	negative oflset
	types
	bookkeeping involved with structured 3- D army calculations
	operator()
	operator()
	operator()
	operator()

	tion bookkeeping for Cell/Face/Edge/Node (CFEN) Entities
	mesh part into the Entitg container

	STD-CELLSH- - Std-cells
	from the Mesh class

	SOLVERII- - Solver
	The Solver class is the base class for all the solvers

	Topology
	USMESHH- - Us-mesh
	neous Unstructured mesh part into the Entity container
	plication of Mesh and Solver objects at a high level
	Class Graph
	Smesh

	Tiger


